一次函数应用题(选择方案).docx_第1页
一次函数应用题(选择方案).docx_第2页
一次函数应用题(选择方案).docx_第3页
一次函数应用题(选择方案).docx_第4页
一次函数应用题(选择方案).docx_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

个性化教案一次函数应用题(选择方案)适用学科初中数学适用年级初中二年级适用区域全国课时时长(分钟)60分钟知识点1.一次函数的性质和图像 2.一次函数与方程、不等式、不等式组、方程组的关系3 一次函数与方案选择应用题教学目标1. 巩固一次函数知识,灵活运用变量关系解决相关实际问题,培养学生数形结合的能力2. 把各种数学模型通过函数统一起来使用,提高解决实际问题的能力3、认识数学在现实生活中的意义,发展运用数学知识解决实际问题的能力教学重点一次函数的模型建立及应用教学难点如何选择合适的模型并应用教学过程一、 复习预习教师引导学生复习上节内容,并引入本节课程内容2、 知识讲解考点/易错点1 一次函数与一元一次方程的关系解关于x的方程kx+b=0可以转化为:已知函数y=kx+b的函数值为0,求相应的自变量的值从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标考点/易错点2 一次函数图像与坐标轴的交点 在直角坐标系中,以方程kx-y+b=0的解为坐标的点组成的图象就是一次函数y=kx+b的图象,当x=0,y=b,当y=0,x=- 一次函数图像与y轴交点(0,b),与x轴交点为(-,0)。考点/易错点3 一次函数的解析式的求法(1)写出函数解析式的一般形式,其中包括未知系数;(2)把自变量与函数的对应值(也可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组(有几个待定系数,就要有几个方程);(3)解方程或方程组,求出待定系数的值,从而写出所求函数的解析考点/易错点4 一次函数与二元一次方程组的关系 两个一次函数的交点为两个一次函数解析式所组方程组的解三、例题精析【例题1】 【题干】一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入成本费用平安保险费) 【答案】 (1)s=50x+100 (2)要售出920张或1020张门票,相应支付的成本费用分别为56000 元或61000元。【解析】由图象可知:当0x10时,设y关于x的函数解析y=kx-100,(10,400)在y=kx-100上,400=10k-100,解得k=50y=50x-100,s=100x-(50x-100),s=50x+100 当10x20时,设y关于x的函数解析式为y=mx+b, (10,350),(20,850)在y=mx+b上, 10m+b=350 解得 m=5020m+b=850 b=-150y=50x-150 s=100x-(50x-150)-50s=50x+100y= 50x-100 (0x10) 50x-150 (10x20) 令y=360 当0x10时,50x-100=360 解得x=9.2 s=50x+100=509.2+100=560 当10x20时,50x-150=360解得x=10.2 s=50x+100=5010.2+100=610。要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。【例题2】 【题干】甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;在的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米? 【答案】(1)s=3t,s=2t (2)8千米 (3)6千米 【解析】设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为s=kt,s=kt。由题意得:6=2 k,6=3 k,解得:k=3,k=2 s=3t,s=2t当甲到达山顶时,s=12(千米),12=3t 解得:t=4s=2t=8(千米)由图象可知:甲到达山顶宾并休息1小时后点D的坐标为(5,12)由题意得:点B的纵坐标为12-=,代入s=2t,解得:t=点B(,)。设过B、D两点的直线解析式为s=kx+b,由题意得 t+b= 解得: k=-6 5t+b=12 b=42 直线BD的解析式为s=-6t+42 当乙到达山顶时,s=12,得t=6,把t=6代入s=-6t+42得s=6(千米) 【例题3】【题干】某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产两种产品50件,已知生产一件产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件产品需甲种原料3kg,乙种原料 5kg,可获利350元(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少? 【答案】(1)有三种生产方案,分别为:方案一:生产产品30件,生产产品20件;方案二:生产产品31件,生产产品19件;方案三:生产产品32件,生产产品18件; (2)选择方案三可获利最多,最大利润为19100元 【解析】(1)设生产产品件,生产产品件,则 解得: 为正整数,可取30,31,32当时,当时,当时, 所以工厂可有三种生产方案,分别为:方案一:生产产品30件,生产产品20件;方案二:生产产品31件,生产产品19件;方案三:生产产品32件,生产产品18件; (2)方案一的利润为:元;方案二的利润为:元;方案三的利润为:元 因此选择方案三可获利最多,最大利润为19100元【例题4】【题干】某工厂生产某种产品,每件产品的出厂价为1万元,其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生.为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理.现有两种方案可供选择.方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理.每处理1吨废渣需付0.1万元的处理费.(1)设工厂每月生产x件产品,每月利润为y万元,分别求出用方案一和方案二处理废渣时,y与x之间的函数关系式(利润=总收入-总支出);(2)如果你作为工厂负责人,那么如何根据月生产量选择处理方案,既可达到环保要求又最合算.【解析】(1)y1=x-0.55x-0.05x-20 =0.4x-20; y2=x-0.55x-0.1x=0.35x.(2)若y1y2,则0.4x-200.35x,解得x400; 若y1=y2,则0.4x-20=0.35x,解得x=400; 若y1y2,则0.4x-200.35x,解得x400. 故当月生产量大于400件时,选择方案一所获利润较大;当月生产量等于400件时,两种方案利润一样;当月生产量小于400件时,选择方案二所获利润较大.四、课堂运用【基础】1某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价145万元;每件乙种商品进价8万元,售价lO万元,且它们的进价和售价始终不变现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元 (1)该公司有哪几种进货方案? (2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案 【解析】(1)设购进甲种商品茗件,乙种商品(20-x)件 19012x+8(20-x)200 解得7.5x10 x为非负整数, x取8,9,lO 有三种进货方案:购甲种商品8件,乙种商品12件 购甲种商品9件,乙种商品ll件 购甲种商品lO件,乙种商品10件 (2)购甲种商品10件,乙种商品10件时,可获得最大利润最大利润是45万元 (3)购甲种商品l件,乙种商品4件时,可获得最大利润 【巩固】1、某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产两种产品共40件,生产两种产品用料情况如下表:需要甲原料需要乙原料一件种产品7kg4kg一件种产品3kg10kg设生产产品件,请解答下列问题:(1) 求的值,并说明有哪几种符合题意的生产方案;(2)若甲种原料50元kg,乙种原料40元kg ,说明(1)中哪种方案较优?【答案】 (1)根据题意,得 这个不等式组的解集为又为整数,所以或26 所以符合题意的生产方案有两种:生产种产品25件,种产品15件;生产种产品26件,种产品14件 (2)一件种产品的材料价钱是:元一件种产品的材料价钱是:元方案的总价钱是:元方案的总价钱是:元元 由此可知:方案的总价钱比方案的总价钱少,所以方案较优【拔高】1、我市某生态果园今年收获了吨李子和吨桃子,要租用甲、乙两种货车共辆,及时运往外地,甲种货车可装李子吨和桃子吨,乙种货车可装李子吨和桃子吨(1)共有几种租车方案?(2)若甲种货车每辆需付运费元,乙种货车每辆需付运费元,请选出最佳方案,此方案运费是多少【答案】共有三种租车方案,其中第一种方案最佳,运费是5100元【解析】(1)设安排甲种货车辆,乙种货车辆,根据题意,得:取整数有:3,4,5,共有三种方案(2)租车方案及其运费计算如下表方案甲种车乙种车运费(元)一33二42三51答:共有三种租车方案,其中第一种方案最佳,运费是5100元五、课程小结本节课讨论了一次函数与不等式结合方案选择应用题,并且能根据实际问题找出函数关系式。六、课后作业1、双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。 (1)求A、B两种型号的服装每件分别为多少元? (2)若销售1件A型服装可获利18元,销售1件B型服装可获得30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售完后,可使总的获得不少于699元,问有几种进货方案?如何进货?【解析】(1)设A型号服装每件为x元,B型号服装每件为y元, 根据题意得: 解得 故A、B两种型号服装每件分别为90元、100元。 (2)设B型服装购进m件,则A型服装购进件, 根据题意得:, 解不等式组得 m为正整数,m10,11,12,2m424,26,28。有三种进货方案:B型号服装购买10件,A型号服装购买24件;或B型号服装购买11件,A型号服装购买26件;或B型号服装购买12件,A型号服装购买28件 2、为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗。某树苗公司提供如下信息: 信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等。 信息二:如下表:树苗每棵树苗批发价格(元)两年后每棵树苗对空气的净化指数杨树30.4丁香树20.1柳树P0.2 设购买杨树、柳树分别为x株、y株。 (1)写出y与x之间的函数关系式(不要求写出自变量的取值范围): (2)当每株柳树的批发价P等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应该怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?【解析】(1); (2)根据题意得 。 设购买树苗的总费用为元,即 随x增大而减小,当时,最小。 即当购买200株杨树、200株丁香树,不购买柳树树苗时,能使购买树苗的总费用最低,最低费用为1000元。 3、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论