公务员考试中排列组合题经典解法.doc_第1页
公务员考试中排列组合题经典解法.doc_第2页
公务员考试中排列组合题经典解法.doc_第3页
公务员考试中排列组合题经典解法.doc_第4页
公务员考试中排列组合题经典解法.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学怪才告诉你怎么解排列组合:在介绍排列组合方法之前 我们先来了解一下基本的运算公式! C5取3(543)/(321) C6取2(65)/(21)通过这2个例子 看出 CM取N 公式 是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作为分母 P53543 P66654321 通过这2个例子 PMN从M开始与自身连续N个自然数的降序乘积 当NM时 即M的阶层 排列、组合的本质是研究“从n个不同的元素中,任取m (mn)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:完成这件事的任何一种方法必须属于某一类;分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: “相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. “不邻”问题在解题时最常用的是“插空排列法”. “在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. 元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3 在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.。提供10道习题供大家练习 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 【解析】 根据三角形边的原理 两边之和大于第三边,两边之差小于第三边 可见最大的边是11 则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候 因此我们以一条边的长度开始分析 如果为11,则另外一个边的长度是11,10,9,8,7,6,。1 如果为10 则另外一个边的长度是10,9,8。2, (不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合) 如果为9 则另外一个边的长度是 9,8,7,。3 (理由同上 ,可见规律出现) 规律出现 总数是1197。1(111)6236 2、 (1)将4封信投入3个邮筒,有多少种不同的投法? 【解析】 每封信都有3个选择。信与信之间是分步关系。比如说我先放第1封信,有3种可能性。接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即333334 (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? 【解析】跟上述情况类似 对于每个旅客我们都有4种选择。彼此之间选择没有关系 不够成分类关系。属于分步关系。如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。知道最后一个旅客也是4种可能。根据分步原则属于乘法关系 即 44443 (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 【解析】分步来做 第一步:我们先选出3本书 即多少种可能性 C8取356种 第二步:分配给3个同学。 P336种这里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。即321 这是分步选择符合乘法原则。最常见的例子就是 1,2,3,4四个数字可以组成多少4位数? 也是满足这样的分步原则。 用P来计算是因为每个步骤之间有约束作用 即下一步的选择受到上一步的压缩。 所以该题结果是566336 3、 七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种? (3600) 【解析】 这个题目我们分2步完成 第一步: 先给甲排 应该排在中间的5个位置中的一个 即C5取15 第二步: 剩下的6个人即满足P原则 P66720 所以 总数是72053600 (2)某乙只能在排头或排尾的不同排法有多少种? (1440) 【解析】 第一步:确定乙在哪个位置 排头排尾选其一 C2取12 第二步:剩下的6个人满足P原则 P66720 则总数是 72021440 (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种? (3120) 【解析】特殊情况先安排特殊 第一种情况:甲不在排头排尾 并且不在中间的情况 去除3个位置 剩下4个位置供甲选择 C4取14, 剩下6个位置 先安中间位置 即除了甲乙2人,其他5人都可以 即以5开始,剩下的5个位置满足P原则 即5P555120600 总数是46002400 第2种情况:甲不在排头排尾, 甲排在中间位置 则 剩下的6个位置满足P66720 因为是分类讨论。所以最后的结果是两种情况之和 即 24007203120 (4)甲、乙必须相邻的排法有多少种? (1440) 【解析】相邻用捆绑原则 2人变一人,7个位置变成6个位置,即分步讨论 第1: 选位置 C6取16 第2: 选出来的2个位置对甲乙在排 即P222 则安排甲乙符合情况的种数是2612 剩下的5个人即满足P55的规律120则 最后结果是 120121440 (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520) 【解析】 这个题目非常好,我们发现一共是7个位置。位置也是对称的 无论怎么安排。甲出现在乙的左边 和出现在乙的右边的概率是一样的。 所以我们不考虑左右问题 则总数是P775040 根据左右概率相等的原则 则排在左边的情况种数是504022520 4、用数字0,1,2,3,4,5组成没有重复数字的数. (1)能组成多少个四位数? (300) 【解析】 四位数 从高位开始到低位 高位特殊 不能排0。 则只有5种可能性 接下来3个位置满足P53原则54360 即总数是 605300 (2)能组成多少个自然数? (1631)【解析】自然数是从个位数开始所有情况 分情况 1位数: C6取16 2位数: C5取2P22C5取1P1125 3位数: C5取3P33C5取2P222100 4位数: C5取4P44C5取3P333300 5位数: C5取5P55C5取4P444600 6位数: 5P555120600 总数是1631 这里解释一下计算方式 比如说2位数: C5取2P22C5取1P1125 先从不是0的5个数字中取2个排列 即C5取2P22 还有一种情况是从不是0的5个数字中选一个和0搭配成2位数 即C5取1P11 因为0不能作为最高位 所以最高位只有1种可能 (3)能组成多少个六位奇数? (288)【解析】高位不能为0 个位为奇数1,3,5 则 先考虑低位,再考虑高位 即 34P441224288 (4)能组成多少个能被25整除的四位数? (21)【解析】 能被25整除的4位数有2种可能 后2位是25: 339 后2位是50: P424312 共计91221 (5)能组成多少个比201345大的数? (479)【解析】 从数字201345 这个6位数看 是最高位为2的最小6位数 所以我们看最高位大于等于2的6位数是多少? 4P554120480 去掉 201345这个数 即比201345大的有4801479 (6)求所有组成三位数的总和. (32640) 【解析】每个位置都来分析一下 百位上的和:M1=100P52(5+4+3+2+1) 十位上的和:M2=4410(5+4+3+2+1) 个位上的和:M3=44(5+4+3+2+1) 总和 MM1+M2+M3=32640 5、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查. (1)“其中恰有两件次品”的抽法有多少种? (152096) 【解析】 也就是说被抽查的5件中有3件合格的 ,即是从98件合格的取出来的 所以 即C2取2C98取3152096 (2)“其中恰有一件次品”的抽法有多少种? (7224560)【解析】同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个 C2取1C98取47224560 (3)“其中没有次品”的抽法有多少种? (67910864)【解析】则即在98个合格的中抽取5个 C98取567910864 (4)“其中至少有一件次品”的抽法有多少种? (7376656)【解析】全部排列 然后去掉没有次品的排列情况 就是至少有1种的 C100取5C98取57376656 (5)“其中至多有一件次品”的抽法有多少种? (75135424) 【解析】所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的 C100取5C98取375135424 6、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( C )(A)140种 (B)84种 (C)70种 (D)35种 【解析】根据条件我们可以分2种情况 第一种情况:2台甲1台乙 即 C4取2C5取16530 第二种情况:1台甲2台乙 即 C4取1C5取241040 所以总数是 304070种 7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有_4186_种. 【解析】至少有3件 则说明是3件或4件 3件:C4取3C46取24140 4件:C4取4C46取146 共计是 4140464186 8、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( C ) (A)1260种 (B)2025种 (C)2520种 (D)5040种 【解析】分步完成 第一步:先从10人中挑选4人的方法有:C10取4210 第二步:分配给甲乙并的工作是C4取2C2取1C1取162112种情况 则根据分步原则 乘法关系 210122520 9、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有_ C(4,12)C(4,8)C(4,4) _种 【解析】每个路口都按次序考虑 第一个路口是C12取4 第二个路口是C8取4 第三个路口是C4取4 则结果是C12取4C8取4C4取4 可能到了这里有人会说 三条不同的路不是需要P33吗 其实不是这样的 在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含。 如果再P33 则是重复考虑了 如果这里不考虑路口的不同 即都是相同路口 则情况又不一样 因为我们在分配人数的时候考虑了路口的不同。所以最后要去除这种可能情况 所以在上述结果的情况下要P33 10、在一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论