




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1-1:在怎样的条件下纳维埃斯托克斯方程式可以转化为定物性流体的边界层动量方程式(157)?说明边界层中压力p只是x的函数的物理意义。(1) N-S方程的原始形式为(x方向):在定物性流体、二维稳定流动的情况下,上式化简为:展开其在x、y方向的表达式如下:在速度边界层内有一下的特点和边界条件:,量纲分析后,忽略流体所受的质量力和x方向的速度梯度,化简结果如下:(2) 压力p仅是x的函数,则可以写为,从而根据边界层外势流区的伯努利方程可以求得压力,然后直接用于速度边界层。1-2:设一定物性流体在二平行平板间作二维稳定的流动。在离进口导边足够远的地方,y方向的速度分量v0,而u只是y的函数。 试根据纳维埃斯托克斯方程式分别写出x和y方向的动量方程式,并说明怎样确定轴向压力梯度?解:定物性流体二维稳定流动的N-S方程为:题目描述的条件下简化成为轴向压力梯度由伯努利方程确定(),1-3.根据图1-13所示的轴对称旋转体的坐标系统,采用边界层中控制容积的方法,试推导出轴对称旋转体的连续性方程式(1-79)和边界层动量积分方程式(1-80)。(1) 推导连续性方程: 如图示:图中x轴上:从左边流入控制体的质量流量为:;从右边流出控制体的质量流量为:;则在x轴上净剩余的质量流量为:;y轴上:从下边流入控制体的质量流量为:; 从上边流出控制体的质量流量为:; 则在y轴上净剩余的质量流量为:;对于稳定流,控制体内流体的密度为常数,即,故根据质量守恒定律则有:等式两边同除以,即得到公式(1-79),即:(2) 推导动量方程:(对于x轴) 脚标定义同上:;由于故;。根据动量守恒定律有:由伯努力方程可知,即,代入上式动量方程,同时考虑到的长度大于边界层厚度,因此有,等式两边同除以化简得到动量积分方程式(1-80):证毕1-4.试根据上题所给的条件,推导轴对称旋转体的能量方程式(1-94)。(1)进入控制容积的热量:a. 从左边带入的热量为:;b. 从下边带入的热量为:;c. 由壁面导入的热量为:;(2).带出控制体的热量:d. 从上边带出的热量为:0;e. 从右边带出的热量为:;根据能量守恒关系,则有abcde;设,定义焓厚度为,而,代入上式化简得到能量方程的积分形式:考虑到壁面曲率的影响(不懂),给上式加一项,即得到要证明的公式(1-94):1-5.试用直接对边界层动量方程式(1-58)积分的方法,推导二维坐标系统的边界层动量积分方程式(1-78),并最后得出用边界层排量厚度和动量厚度表示的方程式(1-83)。解:(1)因为边界层外为势流区,因此有,由此可得: (1)按边界层外势流区的伯努力公式得: (2)对分部积分得:(3)又把(1),(2),(3)代如原积分式,并利用(4),化简并整理可得: (4)由此,可得出边界层动量积分方程式。(2)把两边同除同时另得: (1)又 (2) (3)把(2)(3)代入(1)得: (4) 由得: 由得: 综上:-+-+=(-)+(2-)+(-)+(-)-得: 2-得:-得:-得将以上化简结果带入整理可得:1-6.试从二维坐标系统的边界层能量积分方程(1-90)出发,进行推导和化简,最后得到用焓厚度表示的方程式(1-93)。解:把两端同时除以,令得:由于:由式知:故:第二章作业:2-1:对于二无限长平行平板间充分发展区的流动(图2-1a),若上平板以速度运动,下平板静止不动,则流动称为考埃脱(Couette)流动。试以无量纲量()作为参变量,用无量纲速度和无量纲距离之间的函数关系表示充分发展区的速度分布;若上述无量纲参数在+2到-2之间变化,描绘无量纲速度的分布。解:二无限长平板间充分发展区溜达,其控制方程为:边界条件为:;对控制方程进行积分得:将边界条件代入得:;故:即:令,故:当无量纲参数在-22之间变化时,无量纲速度分布如下图所示:2-2: 分析二无限长平行平板间的层流换热。1解释在怎样的条件下它的能量方程式可以写成;2若下平板静止不动,壁温是定值,上平板以速度运动,壁温()也是定值,并忽略平行平板间的州向压力梯度,试以无量纲距离y/b之间的函数表示充分发展区的温度分布;3若上述无量纲参数在0到2之间变化,描述无量纲温度的分布。解:1、(1)在常数较大,考虑能量粘性耗散;(2)定壁温;(3)常物性;(4)处于充分发展阶段;2、认为此两个无限长平行平板间的距离为2b。(1)求解速度分布:由题目可知,描述此问题的动量方程为: 由于忽略轴向压力梯度,即边界条件:;解方程可得:;(2)温度分布:能量方程: 令:;能量方程可写为: 边界条件:,;,经积分得:将边界条件代入得:;故:令,则温度方程可写为:3、当无量纲参数m在02之间变化时,无量纲温度分布如下图所示:2-3 分析平板间距为2b的二无限长平板间充分发展区的层流换热,并考虑能量粘性耗散。设平板壁温维持定值,并取作温度计算的起点,试确定平板间的温度分布和流体混合平均温度。能量方程:其中: 对于无限长平板间充分发展区的层流换热,近似考虑:即:层流:充分发展:所以能量方程为:在充分发展区,=const,能量方程积分得:边界条件:。 整理:求混合平均温度:2-4:试推导二侧均匀加热时平行平板间充分发展区的流体温度分布、流体混合平均温度和数的下列计算公式:;解:两平行平板间充分发展区的能量方程为:定热流时,根据能量守恒可得:,代入能量方程得:速度分布 相应的边界条件为:积分两次并由边界条件确定积分常数,得温度分布为,即:换热系数为:则努谢尔数为:2-5:在定热流条件下的同心圆环形管道的充分发展区的层流换热式(2-53)和(2-54)中,若则课分别得出。试问:(1)对于的平行平板,相应于上述条件的内外侧热流的比值是多少?(2)定性的绘出它的温度分布,并解释上述结论;(3)若,又说明什么?这二个公式是否仍然适用?为什么?解:(1)对于的平行大平板,查P63表2-2得,则对应于的内外侧热流的比值为:(2)根据可知,时,说明。此时,虽然,但无传热。(3),说明,即流体将向平板传热此两公式仍然适用。2-6:计算圆管的格雷芝问题。已知进口处的流体温度分布为: 时;是 。如果这个进口条件成立,试根据表2-3给出的前三个特征函数计算沿管壁的热流分布;到达充分发展区时的局部努谢尔特数是多少?解:取则: 1 根据查表2-3所得的前三个特征函数,对上式分段积分得2-7:在变壁温圆管热进口段层流换热问题中,壁温和流体进口温度之差按直线规律沿管长变化:,这里b是一个常数,是从进口导边开始计算的无量纲距离。试证明该情况下的局部努谢尔特数和斜率b无关,并可按下列公式计算: 提示:从式(2-70)出发得到的任意处的热流,再对式(p)积分得到。注意在管进口处,根据式(2-64)可得到证明:将和代入并积分:,又可得:2-8:计算变壁温圆管热进口段问题。假定进口处已具有充分发展的速度分布。若空气以均匀温度流入圆管,壁温变化为:时,;时,求相应于和0.08时的值和管壁热流(和不必具体计算)。解:当时,查表2-5, 4.17, 0.6281/24.171000.628130.938 当0.08时, 3.77 0.459 1/2.771000.4594.17(-150)0.628-219.771 2-9一内径为0.6cm,管长为1.2m的圆管,四周绕有电热丝,用以均匀加热流过的有机燃料。燃料进口温度为10,出口温度为65,质流量为1.2610-3kg/s,并当作定物性处理。它的物性参数为Pr=10 =0.1398W/(mK) =753kg/m3 =6.68410-4kg/(ms) cp=2.092kJ/(kgK)试求管壁温度、流体混和平均温度和局部努谢尔数沿管长的变化解:因为流体的Pr数较大,可认为速度边界层充分发展时,热边界层还只是刚发展起来,近似已知热流时圆管热进口段的对流换热问题,由能量守恒得到热流密度为 (1) 壁面温度分布由课本中式(2-77)计算得到由表2-3得Rn(r+=1)=0所以上式简化为将代入上式得其中无量纲轴向距离,代入上式得()(2) 流体混和平均温度可由式(2-78)求得=()此结果和直接用能量守恒得到的结果一致:取dx长度的流体微元作为控制体积,列能量守恒积分得到()(3) 局部努谢尔数沿管长的变化可由(2-79)求得由表2-6显示的特征值n和常数An,代入上式即得到局部努谢尔数沿管长的变化结果,在表2-7中也可以看到实用方便的计算结果2-10、 一变壁温圆管热进口段的进口处已具有充分发展的速度分布。当时,壁温比流体进口温度升高的数值为a,并维持定值直到,此后再次增大,升高的数值为b,并继续保持不变。试推导一个普遍的公式,用以确定时的壁面热流、流体混合平均温度和局部努谢尔特数。解:由已知,则由公式(2-63)得壁面热流为:(21)其中,;流体混合平均温度: (22)将公式(21)代入(22)中,有:(23)局部努谢尔特数:由公式(259)得: (24) (25)(26)2-11、一变热流圆管热进口段的进口处已具有充分发展的速度分布。当时管壁热流维持不变,当时管壁为绝热。试推导一个普遍的公式,用以确定的绝热段中的壁温变化。解:由已知可知:,则由式(282)得:(27)而由式(281)得:(28)将(28)式代入(27)中得到:(29)即有(210)3.1 空气以27、1atm和10m/s的来流速度垂直流过一个5cm直径的圆柱体,沿圆柱体边面边界层的主流速度可按式(3-50)计算。试确定驻点处的排量厚度,并对计算结果作出解释。解:根据式(3-50)得圆柱体表面边界层外的主流速度为:由则查附表1得空气得运动粘度为所以,驻点处的排量厚度为: 查图3-5,并采用复合梯形积分公式求解,得排量厚度为,3.2 定物性流体以速度=常数外掠一平壁。若边界层中的速度分布可近似按确定,式中是边界层厚度,试应用动量积分方程式的求解方法求排量厚度、动量厚度和局部阻力系数,并和精确解的结果进行比较。若速度分布按规律变化,能按上面相同的步骤进行求解吗?为什么?解:(1)由速度分布计算排量厚度:动量厚度:壁面剪应力:由动量积分方程式:积分得x处的边界层厚度为:壁面的局部阻力系数:与式(3-15)的精确解只相差,足够精确。(2)当速度分布为时,由于不满足边界条件,所以不能用上述步骤进行求解。3-3对积分得:,由于,将其代入得继续积分得:又由于,可得:最后得:3-4 (a)根据表3-2中对应的值和,将0.01代入公式(a)并对其数值积分得0.0559即0.00559根据3-3的近似结果可得:0.5640.00564比较得误差为可见,近似结果与数值积分所得结果误差较小3-5 Pr=0.01的低Pr数介质绕流,壁面无喷注,试求二维驻点流的相似解。根据驻点动量方程式求得的f()列于下表00.51.01.52.03.03.0f()00.120.450.871.342.32-0.7解:由课本(3-44)式可得楔状流换热时无量纲温度梯度的表达式,对于驻点流其中的m=1,则其能量方程的相似解为由题目给出的动量方程式相似解的结果可用梯形积分的方法求得其中使用抛物线积分技术对上式进行数值积分的VB程序如下:Public Function e(y)e = Exp(-0.005 * y 2 + 0.007 * y - 0.00485)End FunctionPrivate Sub Command1_Click()A = 0 积分下限B = 300 积分上限N = 1000 积分区域的等分份数,要求为偶数delty = B / N 步长抛物线求积分的第一项E1 = e(A)抛物线求积分的第二项E2 = e(B)抛物线求积分的第三项E3 = 0For i = 0 To N - 2 Step 2E3 = E3 + e(A + i * delty)Next i抛物线求积分的第四项E4 = 0For i = 1 To N - 1 Step 2E4 = E4 + e(A + i * delty)Next i积分结果Sum = delty * (E1 + E2 + 2 * E3 + 4 * E4) / 3result = 1 / SumText1.Text = resultEnd Sub程序运行结果为7.46275206378875E-020.0746修改积分上限B的数值可知程序中使用300已经足够大,因为当B350时,程序运行得到的结果是0.0744,与上限为300时的结果仅有0.2%的误差,可以接受3-6 对伯拉修斯方程式进行一次变换,令这里C是一个任意常数。试求变换后的方程式是式中,和式F对的二阶和三阶导数解:伯拉修斯方程的原始形式为3-7 根据习题3-6的结论,取F(0)=0.62、(0)=0、(0)=1进行数值计算,计算时取=0.1(01)。试求此时的喷注参数和壁面上的无量纲速度梯度,并把结果和表3-5中给出的数据进行比较解:按题意数值计算的VB程序编写如下:Private Sub Command1_Click()赋初值x = 0F = 0.62F1 = 0F2 = 1F3 = -0.5 * F * F2步长deltx1 = 0.1deltx2 = 0.4存放结果的文件Open fprint.txt For Output As #1表头Print #1, x; Tab; F; Tab; F1; Tab; F2; Tab; F3Print #1, Format(x, 0.0); Tab; Format(F, 0.00000); Tab; Format(F1, 0.00000); Tab; Format(F2, 0.00000); Tab; Format(F3, 0.00000)01For i = 1 To 10x = x + deltx1F = F + F1 * deltx1F1 = F1 + F2 * deltx1F2 = F2 + F3 * deltx1F3 = -0.5 * F * F2Print #1, Format(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大唐电力江苏省2025秋招面试专业追问及参考机械工程岗位
- 大唐电力铁岭市2025秋招机械工程专业面试追问及参考回答
- 中国广电呼和浩特市2025秋招心理测评常考题型与答题技巧
- 操守小学校园艺术节活动方案
- 台州市中石油2025秋招笔试模拟题含答案炼化装置操作岗
- 国家能源乌鲁木齐市2025秋招笔试题库含答案
- 舟山市中石油2025秋招面试半结构化模拟题及答案财务与审计岗
- 太原市中石油2025秋招面试半结构化模拟题及答案炼油设备技术岗
- 张家口市中石油2025秋招笔试综合知识专练题库及答案
- 仓储管理中级考试题及答案
- 精神分裂症并发糖尿病患者护理查房
- 当幸福来敲门全剧中英文台词
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 曲臂车操作规程含曲臂式高空作业车专项施工方案报审表
- DBJ-T 13-210-2023 福建省房屋市政工程基桩检测试验文件管理标准
- Unit+2+短语背诵版 高中英语北师大版(2019)必修第一册
- 质量月报范本
- FZ/T 52051-2018低熔点聚酯(LMPET)/聚酯(PET)复合短纤维
- 【精品】2020年职业病诊断医师资格培训考试题
- 派车单(标准样本)
- 广东省建筑施工安全管理资料统一用表2021年版(原文格式版)
评论
0/150
提交评论