




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年高考导数知识点总结 导语:导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,有很多方面需要大家注意的,下面由为您整理出的高考导数知识点总结,一起来看看吧。 一、函数的单调性 在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0. f(x)f(x)在(a,b)上为增函数. f(x)f(x)在(a,b)上为减函数. 二、函数的极值 1、函数的极小值: 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f(a)=0,而且在点x=a附近的左侧f(x)0,右侧f(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值. 2、函数的极大值: 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f(b)=0,而且在点x=b附近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 三、函数的最值 1、在闭区间a,b上连续的函数f(x)在a,b上必有最大值与最小值. 2、若函数f(x)在a,b上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 四、求可导函数单调区间的一般步骤和方法 1、确定函数f(x)的定义域; 2、求f(x),令f(x)=0,求出它在定义域内的一切实数根; 3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间; 4、确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性. 五、求函数极值的步骤 1、确定函数的定义域; 2、求方程f(x)=0的根; 3、用方程f(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格; 4、由f(x)=0根的两侧导数的符号来判断f(x)在这个根处取极值的情况. 六、求函数f(x)在a,b上的最大值和最小值的步骤 1、求函数在(a,b)内的极值; 2、求函数在区间端点的函数值f(a),f(b); 3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 特别提醒: 1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件. 2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点. 3、可导函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能制造系统架构-第2篇-洞察及研究
- 二零二五年度精装修公寓包工包料合同范本
- 2025版北京金融科技产业信托借款合同模板
- 2025版汽车租赁与运输一体化服务合同
- 2025版场部信息保密与信息安全保密协议书
- 2025版项目结算保函担保合同规范
- 二零二五年度互联网广告投放合同主体变更及效果评估
- 二零二五版腻子产品绿色包装设计与销售合同
- 新疆2024公务员考试真题及答案
- 桂平市社区工作者招聘笔试真题2024
- 2025中国成人ICU镇痛和镇静治疗指南解读
- 曲靖市罗平县人民医院招聘考试真题2024
- 战术搜索教学课件
- 2025年福建厦门港务控股集团有限公司招聘考试笔试试题(含答案)
- 2025年陕西省行政执法资格考试模拟卷及答案(题型)
- 2025年长三角湖州产业招聘笔试备考题库(带答案详解)
- 2025包头辅警考试真题
- 2025至2030中国高端英语培训行业市场发展分析及发展趋势与投资机会报告
- 地质灾害治理工程施工安全管理制度
- 2025年茶艺师职业技能鉴定考试试卷(含答案)
- 中央党校师资管理制度
评论
0/150
提交评论