




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1 连续系统的传递函数任何一个SISO系统都可以用差分方程来表示 若系统的输入为函数 则输出为脉冲响应函数g t 因为函数只作用于t 0 而在其他时刻系统的输入为0 所以系统的输出是从t 0开始的脉冲响应函数g t 如果采样间隔时间为T 并设系统可以用n阶差分方程表示 则 用脉冲响应来求解传递函数 等式中a1 a2 an为待定的n个常数 2 根据上式 将时间依次延迟T 可以得到 联立求解上述n个方程 就可以得到差分方程的n个系数a1 a2 an 3 等式中s1 s2 sn和c1 c2 cn为待求的2n个未知数 对上式求Laplace反变换 得到脉冲响应函数 任何一个线性定常系统 如果其传递函数G s 的特征根为s1s2 sn 则其传递函数可以表示为 4 要使上式为成立 应令方括号内的值为0 即 将上面等式带入到下列脉冲响应的差分方程中 得到 令 则可以得到 5 解方程可以得到x的n个解x1 x2 xn 设 至此可以得到s1 s2 sn 下面求解c1 c2 cn 6 例 有一个三阶系统 脉冲响应数据如下 试求解该系统的线性定常脉冲传递函数 7 等式中 因而有 2 离散系统的脉冲传递函数 设系统脉冲传递函数形式为 根据脉冲传递函数的定义可以得到 8 进一步得到 9 令上式两边z i的同次项系数相等 可以得到 10 例 设采样间隔时间为0 5s 系统的脉冲响应序列g k 如下表所示 求系统的脉冲传递函数 11 例 有一个三阶系统 脉冲响应数据如下 试用Hankel矩阵法求解该系统的脉冲传递函数 12 第七章系统阶次的辨识 系统的阶次 对传递函数而言 指极点个数 对于状态空间而言 是指最小实现的状态个数 本章讨论单输入单输出系统的阶次辨识问题 主要介绍F检验法和AIC准则这两种基本的阶次辨识方法 阶次辨识和参数估计两者是互相依赖的 参数估计时需要已知阶次 而辨识阶次时又要利用参数估计值 两者密不可分 13 如何根据脉冲响应的采样值来判定模型的阶次 7 1 根据Hankel矩阵判定模型的阶次 已知系统的脉冲响应序列g0 g1 gN 定义Hankel矩阵H l k 为 我们根据Hankel矩阵的秩来判定系统模型阶次 14 定理 若Hankel矩阵的维数l大于系统的阶次n 则Hankel矩阵的秩等于系统的阶次n 当Hankel矩阵维数l n 1时 对于所有的k Hankel矩阵的行列式为零 当我们对于每个k值以及不同的维数l值 计算Hankel的行列式 就可以判定模型的阶次n 15 实际上 由于噪声存在 当维数l n 1时 这些行列式的值并不恒等于零 但会突然变小 我们必须引入某个准则 以确定显著性水平 有一种方法是对于每一个不同的维数l值 计算Hankel矩阵的行列式的平均值 然后对于不同的l值 比较行列式比值Dl Dl值为最大时的维数l值 就是系统模型的阶次 16 以自相关系数作为Hankel矩阵的元素 再按新的Hankel矩阵来确定矩阵的秩 同样 由于噪声的影响 所得的行列式也不恒等于零 另一种方法是根据脉冲响应序列 求出它们的自相关序列的估计值 以及自相关系数值 17 1 0 0 80 0 65 0 54 0 46 0 39 0 35 0 31 0 28 0 26 0 24 0 23 0 22 0 21 0 20 0 19 0 19 0 18 0 18 0 18 0 17 0 17 0 17 0 16 0 16 0 15 0 15 0 15 0 15 0 14 0 14 0 14 0 13 0 13 0 13 0 13 0 12 0 12 0 12 0 12 0 12 0 11 0 11 0 11 0 11 0 10 0 10 0 10 试判定该模型的阶次 例 已知系统的脉冲响应序列g k 为 18 第一种方法 求得各Hankel矩阵行列式的平均值 以及行列式比分别为 矩阵H 2 k 行列式的平均值为0 00087872矩阵H 3 k 行列式的平均值为 0 00029311矩阵H 4 k 行列式的平均值为 3 214 10 7矩阵H 5 k 行列式的平均值为 5 709 10 9D2 2 998 D3 913 1 D4 64 2因此 可以确定系统的阶数为3 19 第二种方法 求出脉冲响应序列的相关系数为 以为元素构造Hankel矩阵并计算Hankel矩阵的行列式 得到 detH 2 0 0 014937detH 3 0 1 282 10 5detH 4 0 5 8 10 8由行列式的值可知 系统模型的阶次可以定为3阶 也可以定义为2阶 因为detH 3 0 已经很小了 2020 1 8 20 21 用最小二乘法求出参数的估值 则目标函数为 1 阶和目标函数 7 2根据残差特性判定模型的阶次 考虑系统模型为 如果系统模型为 则目标函数为 22 当n 1 2 时 J1 n 和J2 n 随着n的增加而减小 如果n0为正确的阶次 则n n0 1时 J n 出现最后一次陡峭的下降 n再增大 则J n 保持不变或者只有微小的变化 如果阶次已给定 估计参数 则要求J1和J2最小值 如果阶次未知 则估计参数个数就未知 也要求J1和J2取极小值 那么 当阶次递增时 J1和J2的变化规律如何呢 对于不同阶次 目标函数为 23 假设检验与参数估计区别 参数估计和假设检验都是统计推断的两个组成部分 都是利用样本对总体进行某种推断 但推断的角度不同 参数估计是在总体参数未知的情况下用样本统计量估计总体参数 假设检验是先对总体参数提出一个假设 然后利用样本信息去检验这个假设是否成立 如果成立 就接受这个假设 否则就放弃 24 在实际工作中 前人对某些问题得到初步的结论 这些结论可能正确 可能错误 若视这些结论为假设 问题在于我们是否应该接受这些假设呢 例 我们对某产品进行了一些工艺改造 或研制了新的产品 要比较原产品和新产品在某一项指标上的差异 这样我们面临选择是否接受假设 新产品的某一项指标优于老产品 我们必须作一些试验 也就是抽样 根据得到的样本观察值来作出决定 假设检验问题就是根据样本的信息检验关于总体的某个假设是否正确 假设检验的思想 25 假设检验的方法 先介绍一条所谓实际推断原理 小概率原理 通过大量实践 人们对小概率事件 即在一次试验中发生的概率很小的事情 总结出一条原理 小概率事件在一次试验中几乎不会发生 并称此为实际推断原理 其为判断假设的根据 在假设检验时 若一次试验中小概率事件发生了 就认为是不合理的 小概率事件在一次试验中发生的概率记为 一般取 在假设检验中 称 为显著水平 检验水平 26 即先对所关心的问题提出原假设H0 然后运用样本信息看在H0成立的条件下会不会发生矛盾 最后对H0成功与否作出判断 若小概率事件发生了 则否定H0 若不发生 则接受H0 概率反证法的逻辑是 如果小概率事件在一次试验中居然发生 我们就以很大的把握否定原假设 假设检验使用的方法是概率论的反证法 27 某日开工后为检验包装机是否正常 随机地抽取它所包装的糖9袋 称得净重为 公斤 0 05 例 某车间用一台包装机包装葡萄糖 包得的袋装糖重是一个随机变量X 且 当机器正常时 其均值为 0 5公斤 标准差 0 015公斤 0 497 0 506 0 518 0 524 0 498 0 511 0 520 0 515 0 512 问机器是否正常 那么 如何判断原假设H0是否成立呢 即看在 0 5的条件下会不会产生不合理现象 解 先提出假设 28 即在 0 5的条件下 则 为X的一个样本 它们是随机变量 于是有统计量 问Z大到什么程度可以否定H0呢 这就要确定一个 否定H0的值 为此令 即 29 拒绝H0 接受H0 接受域 30 假设检验的步骤 由实际问题提出原假设和备择假设 确定适当的检验统计量 并在原假设为真的条件下确定该统计量的分布 根据问题的要求规定显著性水平 一般题目中会给定 从而得到拒绝域 由样本观测值计算检验统计量的值 看是否属于拒绝域 从而对原假设作出判断 31 Astrom 1968 提出的F检验法 引入一个假设检验 将模型阶次的判定问题归结为当阶次从n1增加到n2时 J2 n2 较J2 n1 下降是否显著的问题 Astrom证明 当N足够大时 若n2 n1 n成立 则 2 确定阶的F检验法 且J2 n2 和J2 n1 J2 n2 是相互独立的随机变量 32 存在显著性水平 当时 n2 n1 n成立 否则 n比n1和n2大 这里取 则 引入统计量t 也就是说 当n2 n1 n时 统计量t服从自由度分别为2n2 2n1与N 2n2的F分布 33 当时 则成立 即为对象的阶 令 阶次逐渐增加 用F检验判断 阶次增加 减少 令 例如 取置信度 在100 200 400和 时 查表可以得到F分布的值 F 2 100 3 09 F 2 200 3 04 F 2 400 3 02 F 2 3 00 因此 当 100时 若统计量 则接受假设 即认为下降也不显著 判定系统阶次为 否则否定假设 继续增加阶次并考察统计量 34 其中表示n阶模型未知参数的个数 表示参数的极大似然估计值 为似然函数 反映拟合精度 称该准则为AIC准则 Akaika证明了使为极小的阶 即系统的阶 Akaika 1972 提出一种具有客观标准的阶次判别方法 所采用阶次判定准则为 2 确定阶的AIC准则 35 这里对AIC准则作一个定性的解释 设系统的阶次为n 当阶次估计值小于n时 AIC准则中数值较大 起主导作用 随着的增大而增大 这时准则随的增加而下降 当阶次估计值达到并超过n时 的增长变慢 而项随着的增加不断增大 并起主导作用 这时随的增大而增大 因此 在处形成一个最小值 分析 36 其中为独立的正态分布序列 即白噪声序列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿高胆红素血症与热性惊厥护理知识测试题附答案
- 北师大版七年级数学上册《5.1认识方程》同步练习题及答案
- 2025年襄阳初中入学试卷及答案
- 2025年江苏污水处理试题及答案
- 2025年建筑资质考试试题及答案
- 老师班级模拟考试题及答案
- 团员考核知识题库及答案
- 化学物质性质(如漂白性)辨析试题
- 化学方程式中物质的量计算试题
- 2025年高考物理整体法与隔离法应用试题
- 景区标识标牌投标方案
- 新学期新起点励志奋斗青春初三毕业班开学第一课主题班会课件
- 2023年自考中国古代文学史试卷及答案
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
- 一年级下册美术教案 -第五课 由小变大的画 ︳湘美版
- 盐酸右美托咪定鼻喷雾剂-临床用药解读
- 电子工业出版社四年级下册信息技术教学计划
- 人教版小学数学六年级上册第四单元《比》作业设计
- 综掘机维修培训课件
- 电泳工艺卡样本
- 食管炎的护理查房
评论
0/150
提交评论