



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆的第一定义 tuyun 平面内与两定点F、F的距离的和等于常数2a(2a|FF|的动点P的轨迹叫做椭圆。 即:PF+PF=2a 其中两定点F、F叫做椭圆的焦点,两焦点的距离FF叫做椭圆的焦距。 椭圆的第二定义平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是X=a2/c)。 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况 标准方程高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。 椭圆的标准方程有两种,取决于焦点所在的坐标轴: 1)焦点在X轴时,标准方程为:x2/a2+y2/b2=1 (ab0) 2)焦点在Y轴时,标准方程为:x2/b2+y2/a2=1 (ab0) 其中a0,b0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当ab时,焦点在x轴上,焦距为2*(a2-b2)0.5,焦距与长.短半轴的关系:b2=a2-c2 ,准线方程是x=a2/c和x=-a2/c 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx2+ny2=1(m0,n0,mn)。既标准方程的统一形式。 椭圆的面积是ab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acos , y=bsin 标准形式的椭圆在x0,y0点的切线就是 : xx0/a2+yy0/b2=1 3公式椭圆的面积公式S=(圆周率)ab(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=(圆周率)AB/4(其中A,B分别是椭圆的长轴,短轴的长). 椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。 椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如 L = 0,/24a * sqrt(1-(e*cost)2)dt2(a2+b2)/2) 椭圆近似周长, 其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL 椭圆的准线方程 x=a2/C 椭圆的离心率公式 e=c/a(e2c) 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a2/C)的距离,数值=b2/c 椭圆焦半径公式 PF1=a+ex0 PF2=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex 椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值= b2/a 点与椭圆位置关系 点M(x0,y0) 椭圆 x2/a2+y2/b2=1 点在圆内: x02/a2+y02/b21 点在圆上: x02/a2+y02/b2=1 点在圆外: x02/a2+y02/b21 直线与椭圆位置关系 y=kx+m x2/a2+y2/b2=1 由可推出x2/a2+(kx+m)2/b2=1 相切=0 相离0无交点 相交0 可利用弦长公式:A(x1,y1) B(x2,y2) |AB|=d = (1+k2)|x1-x2| = (1+k2)(x1-x2)2 = (1+1/k2)|y1-y2| = (1+1/k2)(y1-y2)2 椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b2/a 相关性质 由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。 例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义): 将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。 设两点为F1、F2 对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2 则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2 由定义1知:截面是一个椭圆,且以F1、F2为焦点 用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆 椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。 -关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册圆锥截缐论集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 5历史椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明) 关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册圆锥截线论集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文物鉴定师职业技能考核试题及答案解析
- 攻坚克难类过渡句(2025年8月12日)
- 2025年卫生健康管理师职业技能考试试题及答案解析
- 2025年网站运营策划师综合测试试题及答案
- 2025年网络咨询服务师职业能力考核试题及答案
- 2025年掺混肥项目建议书
- 2025年血栓通胶囊项目合作计划书
- 马鞍山七中初三数学试卷
- 美国中学数学试卷
- 卢龙期末六下数学试卷
- 专人专库管理制度
- 2025年宁波市北仑区海俊人力资源服务有限公司招聘笔试参考题库含答案解析
- 人教版(2025)数学七年级(下)期末测试卷4(含答案)
- 小学教辅材料管理制度
- 软件测试中的探索性测试考题及答案
- 2025年浙江省公务员录用考试《行测》真题及答案解析(C类)
- 2025年制药工程专业考试题及答案
- 机坪证考试试题及答案
- 2025年小学数学期末考试卷及答案
- 2024第41届全国中学生物理竞赛预赛试题(含答案)
- 购买物业定制合同协议
评论
0/150
提交评论