整数的整除性与同余(教案).doc_第1页
整数的整除性与同余(教案).doc_第2页
整数的整除性与同余(教案).doc_第3页
整数的整除性与同余(教案).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

整数的整除性与同余(教案)教学内容 整除与同余教学目标 1 让学生初步学习整除与同余的概念及基本性质;2 能够简单的应用整除与同余的知识处理一些初等数论问题.教学过程一、整数的整除性1、整除的定义:对于两个整数a、b(b0),若存在一个整数m,使得成立,则称b整除a,或a被b整除,记作b|a.2、整除的性质1)若b|a,则对于任意非0整数m有bm|am;2) 若b|a,c|b,则c|a3) 若b|ac,而(a,b)=1(a,b)=1表示a、b互质,则b|c;4) 若b|ac,而b为质数,则b|a,或b|c;5) 若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)6)连续整数之积的性质任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除;任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被23=6整除例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11(7x+2y-5z),求证:11(3x-7y+12z)。证明4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而1111(3x-2y+3z),且11(7x+2y-5z),114(3x-7y+12z)又 (11,4)=111(3x-7y+12z)例2(1980年加拿大竞赛题)设72试求a,b的值。解:72=89,且(8,9)=1,只需讨论8、9都整除时a,b的值。若8,则8,由除法可得若9,则9(a+6+7+9+2),得a=3例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。证明:为连续二整数的积,必可被2整除.对任何整数n均为整数,为整数,即原式为整数.又;2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明 a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.2.a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).k、k+1为二个连续整数,故k(k+1)必能被2整除,8|4k(k+1),即8|(a2-1).又(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),3a,3|(a2-1).3与8互质, 24|(a2-1),即a2+23能被24整除.二、同余及其性质1、同余的概念同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab(modm). (*)上式可读作:a同余于b,模m.同余式(*)意味着(我们假设ab):a-b=mk,k是整数,即m(a-b).补充定义:若m(a-b),就说a、b对模m不同余,用式子表示是:ab(modm)2、同余的性质同余式与等式在其性质上相似.同余式有如下一些性质(其中a、b、c、d是整数,而m是自然数)性质1:aa(mod m),(反身性)这个性质很显然.因为a-a=0=m0。性质2:若ab(mod m),那么ba(mod m),(对称性)。性质3:若ab(mod m),bc(mod m),那么ac(mod m),(传递性)。性质4:若ab(mod m),cd(mod m),那么acbd(mod m),(可加减性)。性质5:若ab(mod m),cd(mod m),那么acbd(mod m)(可乘性)。性质6:若ab(mod m),那么anbn(mod m),(其中n为自然数)。性质7:若acbc(mod m),(c,m)=1,那么ab(mod m),(记号(c,m)表示c与m的最大公约数)。注意同余式性质7的条件(c,m)1,否则像普通等式一样,两边约去,就是错的。例1 判定288和214对于模37是否同余,74与20呢?解:288-214=74=372,288214(mod37),74-20=54,而3754,7420(mod37)。例2 求14389除以7的余数。分析 同余的性质能使“大数化小”,凡求大数的余数问题首先考虑用同余的性质化大为小.这道题先把底数在同余意义下变小,然后从低次幂入手,重复平方,找找有什么规律。解:1433(mod7)14389389(mod 7)8964+16+8+1而322(mod 7),344(mod7),38162(mod 7),3164(mod 7),332162(mod 7),3644(mod 7)。38936431638344235(mod 7),143895(mod 7)。答:14389除以7的余数是5。例3 证明方程2x2-5y2=7无整数解.证明 2x2=5y2+7,显然y为奇数.若x为偶数,则方程两边对同一整数8的余数不等,x不能为偶数.若x为奇数,则x不能为奇数.因则原方程无整数解.说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.例4 求证31980+41981能被5整除.证明 5|点评:证明整除问题常用同余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论