




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
个性化教学辅导方案学科: 数学 任课教师:丁建华 授课时间: 2013年 月 日姓名杨海燕年级高三性别女教学课题不等式与线性规划教学目标知识点:不等式的解法和应用考点:不等式与线性规划.能力:综合解题能力方法:逻辑推理法,图解法重点难点重点:线性规划难点:特殊不等式课前检查作业完成情况:课堂教学内容一、常见不等式及解法.一次不等式:. 一元二次不等式:. 分式不等式:. 绝对值不等式:. 高次不等式:. 一个重要的不等式:题型1:简单不等式的求解问题例1已知,则不等式的解集是( )A(2,0)BC D例2(1) 在49=60的两个中,分别填入两正数,使它们的倒数和最小,应分别填上 和 。(2) 已知的最小值 。点评:简单的分式不等式的解法是高中数学中常用到的求范围问题工具,分式不等式的解题思路是:分式化整式(注意分母不为零)题型2:简单的绝对值、涉及指数、对数和三角的不等式的求解问题例3已知函数,(1) 求函数的单调递增区间(2) 若上恒成立,求实数a的取值范围。例4 函数在0,1上的最大值和最小值之和为,则的取值范围是 。例5.已知圆C:上任意一点关于直线的对称点都在圆C上,求的最小值。题型3:含参数的不等式的求解问题例6(1)设不等式x22ax+a+20的解集为M,如果M1,4,求实数a的取值范围?分析:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗解析:(1)M1,4有两种情况:其一是M=,此时0;其二是M,此时=0或0,分三种情况计算a的取值范围设f(x)=x2 2ax+a+2,有=(2a)2(4a+2)=4(a2a2)当0时,1a2,M=1,4;当=0时,a=1或2;当a=1时M=11,4;当a=2时,m=21,4。当0时,a1或a2。设方程f(x)=0的两根x1,x2,且x1x2,那么M=x1,x2,M1,41x1x24,即,解得2a,M1,4时,a的取值范围是(1,)。题型4:线性规划问题例7(1)(2009山东卷理)设x,y满足约束条件 ,若目标函数z=ax+by(a0,b0)的是最大值为12,则的最小值为( ). A. B. C. D. 4解析 不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a0,b0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a0,b0)取得最大12,即4a+6b=12,即2a+3b=6, 而=,故选A.【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求的最小值常用乘积进而用基本不等式解答.例8.2009安徽卷理)若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 A. B. C. D. 例9设函数,若对于任意的都有成立,则实数的值为 【解析】本小题考查函数单调性的综合运用若x0,则不论取何值,0显然成立;当x0 即时,0可化为,设,则, 所以 在区间上单调递增,在区间上单调递减,因此,从而4;当x0 即时,0可化为, 在区间上单调递增,因此,从而4,综上4(2)在平面直角坐标系中,不等式组表示的平面区域的面积是( )(A) (B) (C) (D)3.已知点 P(x,y)的坐标满足条件点O为坐标原点,那么|PO |的最小值等于,最大值等于。点评:线性规划的应用题也是高考的热点,诸如求面积、距离、参数取值的问题经常出现题型10:不等式的应用例9(2009四川卷文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是 A. 12万元 B. 20万元 C. 25万元 D. 27万元例11已知:函数.(1)试讨论函数的单调性;(2)若,且在上的最大值为,最小值为,令,求的表达式;(3)在(2)的条件下,求证:.作业课堂检测听课及知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新天际租赁合同范本
- 细菌性食物中毒说课稿-2025-2026学年中职专业课-烹饪营养与安全-中餐烹饪-旅游大类
- 3.3DNA复制方式的推测和实验证据教学设计-2023-2024学年高一下学期生物人教版(2019)必修2
- 快递加盟经营合同
- 1.13 近似数说课稿-2025-2026学年初中数学华东师大版2024七年级上册-华东师大版2024
- 6.2 多彩的职业(说课稿)九年级道德与法治下册同步高效课堂(统编版)
- 关于国庆节周记范文锦集7篇
- 中医学试题及答案
- 商业街区商铺产权交易及社区配套服务合同
- 智能家居体验店租赁及产品销售合同
- 肇庆端州正西社区评估报告
- 朝天椒栽培技术课件
- 科研伦理与学术规范-课后作业答案
- -首次执行衔接问题-行政
- 斯蒂芬金英语介绍
- 秋天的雨 省赛获奖
- JJF 1015-2014计量器具型式评价通用规范
- GB/T 8332-2008泡沫塑料燃烧性能试验方法水平燃烧法
- GB/T 38597-2020低挥发性有机化合物含量涂料产品技术要求
- GB/T 21073-2007环氧涂层七丝预应力钢绞线
- 胸痛的诊断和鉴别诊断课件整理
评论
0/150
提交评论