




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学史进入中小学数学课程的意义和影响刘洁民北京师范大学数学系(一)数学史在新一轮中小学数学课程中的地位和意义在课程改革前的中小学数学教学大纲和教材中,数学史主要起两方面作用:通过介绍中国古代数学成就进行爱国主义教育;通过提供少量“花絮”提高学生的学习兴趣。在新一轮中小学数学课程中,数学史首先被看作理解数学的一种途径。义务教育阶段各科课程目标都围绕三个基本方面:知识与技能,过程与方法,态度情感价值观,对于理科课程,还进而包括理解科学、技术与社会之间的关系,尝试科学教育与人文教育的融合。数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣, 培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。 附录:数学史与数学教育构思本书通过多个侧面和大量具体案例论述数学史的教育价值,结合新课程标准的要求,为教师将数学史内容用于实际教学提供直接的指导和帮助。 第一章 读史使人明智数学史的教育价值一、揭示数学知识的现实来源和应用历史往往揭示出数学知识的现实来源和应用,从而可以使学生感受到数学在文化史和科学进步史上的地位与影响,认识到数学是一种生动的、基本的人类文化活动,进而引导他们重视数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。二、理解数学思维一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解, 可以使学生体会到一种活的、真正的数学思维过程, 而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然的、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛, 而不是单纯地传授知识。这既可以激发学生对数学的兴趣,培养他们的探索精神,历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。历史的发展过程可以告诉我们, 在一个专题、一个概念或一个结果的发展中,哪些思想、方法代表着该内容相对于以往内容的实质性进步,从而更深刻地理解它。历史还可以告诉我们在学习过程中可能发生的困难以及克服该困难的可能的途径。比较历史上的不同时期、不同民族或地区对同类问题的不同处理方式, 或同类方法的不同地位与应用, 可以启发学生的解题思路, 并从中比较优劣, 体会到数学思维的真谛。历史可以为我们提供那些答案是“不可能”或“不存在”的问题, 而对这些问题的探索, 是数学研究的一个极为重要的方面, 也是数学思维品质的一个重要方面。三、数学历史名题的教育价值对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性, 提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题还难住了许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受,这对于学生建立良好的情感体验无疑是十分重要的;最后,历史名题往往可以提供生动的人文背景。向学生展示历史上的开放性的数学问题将使他们了解到,数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、错误中发展进化的,数学进步是对传统观念的革新,从而激发学生的非常规思维,使他们感受到,抓住恰当的、有价值的数学问题将是激动人心的事情。数学中有许多著名的反例,通常的教科书中很少会涉及它们。结合历史介绍一些数学中的反例,可以从反面给学生以强烈的震撼,加深他们对相应问题的理解。四、榜样的激励作用 帕斯卡16岁成为射影几何的奠基人之一,19岁发明原始计算器。牛顿22岁发现一般的二项式定理,23岁创立微积分学。高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的算术研究。波尔约23岁提出非欧几何学的基本思想。黎曼被认为是有史以来最大的几位几何学家之一,他在25-28岁期间在数学的三四个领域连续做出了重要的开创性工作。阿贝尔22岁证明一般五次以上代数方程不存在求根公式。伽罗瓦创建群论的时候只有18岁,死时还不满21岁。克莱因23岁发表“爱尔朗根纲要”,全面推动了几何学的研究。哥德尔25岁发表震惊整个数学界的“不完全性定理”。图灵24岁发表论理想数的论文,提出了通用计算机的基本原理,从而成为理论计算机之父。法国的布尔巴基学派对20世纪数学的发展产生了极大影响,它的几位主要创建者当时年纪最大的也只有32岁。19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠作私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。外尔斯特拉斯读大学耽于玩乐,未能毕业,离开大学后才开始发愤努力,40岁获得数学界承认,50岁左右成为杰出的数学家,晚年被欧洲数学界公认为“我们大家的老师”、“数学的良心”。古希腊数学家阿那克萨戈拉晚年因自己的科学观点触怒权贵而被诬陷入狱面临死刑的威胁,但他在牢房中还在研究化圆为方问题。阿基米德在敌人破城而入、生命处于危急关头的时候仍然沉浸在数学研究之中,他的墓碑上没有文字,只有一个漂亮的几何构图,那是他发现并证明的一条几何定理。为了让天文学家从繁琐的计算中解脱出来,纳皮尔发明了对数,而为了计算对数表他自己却整整花费了20年的时间。17世纪初,鲁道夫穷毕生精力将圆周率的值计算到35位小数,并将其作为自己的墓志铭。大数学家欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚韧的毅力保持了数学方面的高度创造力,以致由于他的论文多而且长,科学院不得不对论文篇幅做出限制,在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。数学家的墓碑与墓志铭。阿基米德:圆柱容球。雅格布伯努利:对数螺线。高斯:墓前塑像底座为正17边形。这样的一个名单可以开得更长,这些杰出数学家的故事对于今天的许多学生来说,无疑有着巨大的激励作用。许多大数学家在成长过程中遭遇过挫折,不少著名数学家都犯过今天看来相当可笑的错误,介绍一些大数学家是如何遭遇挫折和犯错误的,不仅可以使学生在数学方法上从反面获得全新的体会(这往往能够获得比从正面讲解更好的效果),而且知道大数学家也同样会犯错误、遭遇挫折,对学生正确看待学习过程中遇到的困难、树立学习数学的自信心会产生重要的作用。数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学既不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富得多的人文内涵。 第二章 源头活水数学知识的来源和背景一、问题的提出、解决与发展 例如:小学数学中的“盈亏问题”,现在已经成了一个固定的套路,由于简单地认为它所处理的仅仅是含有两个未知数的一次方程组,因而或者认为毫无介绍的必要,或者直接用线性方程组求解。实际上,九章算术中的“盈不足”算法的本意在于,通过两次试验,将当时出现的各种复杂的线性问题以及非线性问题化为盈亏类问题,给出一种统一的处理方法,对于线性问题得到精确解,对于非线性问题得到近似解。书中处理的问题,有的是二次方程问题,有的本质上是指数方程问题。中国古代数学书孙子算经中有一个著名的问题“物不知数”,看似一个简单的数学游戏,实际上是对中国古代天文学中推求上元积年算法的一个概括,或者说是推算上元积年的一个数学模型。几何三大难题是怎样提出的,希腊人为什么要研究这样的问题,这三个问题难在何处,它们的最终结果是什么。虽然在义务教育阶段不可能将有关的数学方法和结果真正说清楚,但是,首先,对许多学生来说,这三大难题是有趣的;其次,这三个问题地提出与发展十分典型地表现了数学问题与方法演进的一般规律,这不仅对学生理解初等几何有很大的启发作用,而且可以从中体会更一般的数学思想方法,例如,从反面去思考问题,不可能性问题在数学中的意义等;第三,几何三大难题及其相关问题与初等数学中相当广泛的内容有关系;最后,许多业余数学爱好者为求解这三个问题花费了大量精力,却不知道它们早在19世纪就被否定地解决了。二、方法、重要结果及原理的建立、应用与发展例如:毕达哥拉斯定理是初等数学中一个非常优美而深刻的定理,又有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣。1940年,美国数学家卢米斯(E.S.Loomis)在所著毕达哥拉斯命题艺术的第二版中收集了了它的370种证明并作了分类,充分展现了这个定理的无穷魅力。围绕这个著名定理既有许多动人的故事,它的多种证明方法又是学习数学思想与方法的生动材料。黄金分割同样十分优美和充满魅力。早在公元前6世纪它就为毕达哥拉斯学派所研究,欧几里得在几何原本中给出了一个十分精彩的证明。近代以来人们又惊讶地发现,它与著名的斐波那契数列有着密不可分的内在联系。割圆术起源于公元前5世纪希腊数学家对化圆为方问题的研究。它非常直观而又十分深刻。由于直观,任何人都可以自然地接受它和理解它,而其中蕴含的思想与定积分是相通的,对于理解一般的面积体积度量问题也有明显的帮助。刘祖原理通称祖暅公理,西方称之为卡瓦列利原理。它是初等几何中处理面积体积问题的一个关键性定理,其基本思想在九章算术终就有所体现,刘徽(公元263年)在许多场合用它解决问题,祖暅(6世纪)明确概括了它,这比意大利数学家卡瓦列利(17世纪)的相应工作早了至少1000年。从直观意义上这个原理并不难理解,但其中的思想也是与定积分相通的。这些结果对于开阔学生的眼界、启发思维和为进一步的学习奠定基础都是重要的,而把它们作为历史上的著名工作来介绍,又会增添许多文化韵味并极大地激发学生的兴趣,从而有助于学生对数学建立良好的情感体验。三、概念的提出与发展通过对历史的介绍可以使学生更好地体会到,数起源于“数”(sh),量起源于“量”(ling),因此数和兴都来源于现实世界。希腊人为什么要引入素数,没有素数会怎么样?从古至今寻找大素数的竞赛以及人们为什么要这样做。作为位值制记数法中表示空位记号的零。作为一个数的零是怎样被引入的,其中有什么困难。印度人的相应工作。最初无理数是怎样被发现的,它为什么会被称为“无理数”。毕达哥拉斯学派。最初的一些长度单位是如何确定的。既然记数是10进的,在度量角度时我们为什么要用60进制?从巴比伦人的数学贡献谈起。圆周率的简要历史 (方法, 数值, 公式, 性质),其中有许多动人的故事。四、理论体系、数学分支的建立例如:通常所说的算术,在中国至少可以追溯到甲骨文的时代,在巴比伦至少可以追溯到公元前1900年,在古埃及至少可以追溯到公元前1850年。初等数论(公元前5世纪)。欧几里得几何(约公元前300年),非欧几何(19世纪)。代数学作为解方程的学问(9世纪);近代意义上的代数学(16世纪,韦达)。三角学作为初等数学中的独立分支(13世纪阿拉伯,15世纪欧洲)。希腊历史学家希罗多德认为,埃及几何学起源于尼罗河每年泛滥之后土地的重新丈量。这或许是真的,但他所叙述的事情发生在大约1300B.C.,这比两部主要的埃及数学纸草书的年代晚了许多,因此在时间上肯定是有问题的。 第三章 奇思妙想哪里来揭示数学思想方法一、主要数学方法溯源二、中学数学中典型方法的历史背景三、经典案例分析 第四章 数学是美丽的引导数学欣赏一、尝试欣赏数学二、数学历史名题欣赏三、数学方法与思想欣赏四、数学推理、模型与构图欣赏五、数学精彩结果欣赏六、数学概念与性质欣赏七、数学理论体系欣赏八、欣赏数学,领悟数学 第五章 追随大师的脚步介绍名家名作一、中国古代名家名作二、外国古代名家名作三、近现代名家名作 第六章 站在巨人的肩上数学史与新课程一、关于课程标准对数学史内容的要求 1. 在“教材编写建议”中对数学史内容提供较为充分的线索,使教材编写者有较大的选择余地。 2在“总体目标”中原则性地提出要求。 3在“分学段目标”中,数学史知识可以作为完成其他具体要求的一种手段和途径。二、数学史进入课程的基本形式新的教学内容的引入部分;例题;习题;阅读材料(分为“小资料”和“扩展性阅读材料”两类)。三、论数学史阅读材料的作用 (二)对高中数学史选修课的一点看法基于本文第一部分的考虑,高中数学史选修课应该主要是一门数学课,而不是历史课。它的目标和重点应该在很大程度上围绕高中数学课程的目标和重点,同时兼顾义务教育阶段已经涉及的一些重要数学内容。目前高中数学课程标准中对数学史以及数学文化的课程定位、具体要求乃至选题设计都是相当到位的。在知识性问题上不应要求过高,重在突出数学思想方法,突出启发性和引导性,激发学生的兴趣和思考。由于只有18课时,不可能系统讲授。又由于这门选修课是为在数学方面具有一定实力和足够兴趣的学生开设的,因此在内容选取上要精心考虑。教材要有足够的引导性和相当程度的开放性。为使课程有适当的容量,适当的扩展阅读是非常必要的。基于上述考虑,这门课相当比例的内容可能按照如下模式进行教学:提出问题引导阅读(课外)讨论交流教师的概括与提升进一步的阅读这样的课程,一方面对教师的数学专业素养和数学史素养提出了较高的要求,另一方面也对配套的课程资源提出了要求,如教师参考用书,学生课外读物,电子音像资料,多媒体教学课件等。高中数学课程标准中“数学文化”没有独立的模块,需要渗透在其他模块或专题中,数学史与数学文化的结合应该是必要的,而且几乎是必然的。对此,课程标准在教学要求和选题上已经有明确的考虑,例如,有一半左右的推荐选题与数学史有直接关系。但是,对于实际的教学,似乎有必要给出更进一步的引导,使教师可以方便地实施。 附录:课程标准原文要求1.数学文化应尽可能有机地结合高中数学课程的内容,选择介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步、人类文明发展中的作用,同时也反映社会发展对数学发展的促进作用。2.学生通过数学文化的学习,了解人类社会发展与数学发展的相互作用,认识数学发生、发展的必然规律;了解人类从数学的角度认识客观世界的过程;发展求知、求实、勇于探索的情感和态度;体会数学的系统性、严密性、应用的广泛性,了解数学真理的相对性;提高学习数学的兴趣。3.以下选题供参考。(1)数的产生与发展;(2)欧几里得几何原本与公理化思想;(3)平面解析几何的产生与数形结合的思想;(4)微积分与极限思想;(5)非欧几何与相对论问题;(6)拓扑学的产生;(7)二进制与计算机;(8)计算的复杂性;(9)广告中的数据与可靠性;(1O)商标设计与几何图形;(11)黄金分割引出的数学问题;(12)艺术中的数学;(13)无限与悖论;(14)电视与图像压缩;(15)CT扫描中的数学一一拉东变换;(16)军事与数学;(17)金融中的数学;(18)海岸线与分形;(19)系统的可靠性。 (三)数学史进入中小学数学课程带来的连锁反应对中小学数学教师的数学史素养提出了较高要求数学系本科数学史课程的普遍开设数学史硕士研究生的培养相关的数学史课程资源的开发上述四方面工作,每个都是系统工程,有大量具体工作有待进行。以下就这几个方面发表一点粗浅的看法。 1中小学数学教师的数学史素养小学和初中:具有初步的数学史常识、并且能将其初步融入数学课程的数学教师。培养途经:1数学系本科数学史课程。2在职培训。 高中:能开设数学史选修课的教师。培养途经:1在数学系本科数学史课程的基础上,进一步开设数学史讨论班。2在职培训。3数学史硕士课程班。数学史硕士课程班:以相对简单的方式,较短的周期,解决中学数学课程对教师数学史基本知识的要求,特别是在较大范围内解决高中数学史选修课的任课教师问题。对此,应做好充分的前期准备,包括对课程计划的充分论证和相关的资源开发,不宜一哄而上。 2数学系本科数学史课程的建设第一步,努力在尽可能多的高师院校数学系开设数学史选修课。需要特别注意的是保证这门课程的开课质量。目前的实际情况是绝大多数高师院校数学系缺少数学史教师,更缺少对数学史课程必要性的认识。另外,以往某些学校的数学史课程是由一些对数学史有一定兴趣但缺乏足够了解的教师开设的,呆了一系列问题,例如课程在很大程度上照本宣科,成为大事年表或流水账,枯燥乏味,缺少启发性等。我的一个基本看法是,数学史课,开就要开好,否则不如仅仅设为讨论班
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7.2《东南亚》第一课时说课稿2023-2024学年人教版七年级地理下册
- 2025云南文山州第一中学招聘编外人员1人备考考试试题及答案解析
- 2026届江苏省泰兴市实验八年级物理第一学期期末学业质量监测试题含解析
- 江西鹰潭市贵溪第二中学2026届物理八年级第一学期期末学业水平测试模拟试题含解析
- 大连市重点中学2026届八年级物理第一学期期末质量检测模拟试题含解析
- 2025年中国大唐印尼公司职业发展面试预测题集
- 拇外翻的护理课件
- 2025年超多道数字地震仪合作协议书
- 2025年新能源环卫装备项目建议书
- 2025年电梯、自动扶梯及升降机项目建议书
- 2024宅基地房屋租赁合同范本
- 常见血液病科普
- JJF1030-2023温度校准用恒温槽技术性能测试规范
- 矿山压力与岩层控制(第二章)
- 冶金传输原理课件
- 中学生心理健康影响因素
- 急性左心衰抢救流程图片
- 2024年中邮保险公司招聘笔试参考题库含答案解析
- 第3章 Word 2016文字处理软件
- 工业机器人的发展现状和未来趋势
- 2023台球厅灭火和疏散应急预案
评论
0/150
提交评论