




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学科教师辅导讲义学员编号: 年 级:九年级 课 时 数: 学员姓名: 辅导科目:数学 学科教师: 课 题二次函数综合复习授课日期及时段 教学目的1、 掌握二次函数定义和二次函数的图像和性质;2、 会用待定系数法求函数的解析式;3. 会根据二次函数的性质解决综合性问题。教学内容二次函数图象的平移 1. 平移步骤:方法一: 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿轴平移:向左(右)平移个单位,变成(或) 二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值 2. 当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的增大而增大;当时,随的增大而减小;当时,有最大值二次函数解析式的表示方法1. 一般式:(,为常数,);2. 顶点式:(,为常数,);3. 两根式:(,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化.二次函数的图象与各项系数之间的关系 1. 二次项系数二次函数中,作为二次项系数,显然 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴 在的前提下,当时,即抛物线的对称轴在轴左侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的右侧 在的前提下,结论刚好与上述相反,即当时,即抛物线的对称轴在轴右侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的左侧总结起来,在确定的前提下,决定了抛物线对称轴的位置的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结: 3. 常数项 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负 总结起来,决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称(即:抛物线绕顶点旋转180) 关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是 5. 关于点对称 关于点对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数: 当时,图象与轴交于两点,其中的是一元二次方程的两根这两点间的距离. 当时,图象与轴只有一个交点; 当时,图象与轴没有交点. 当时,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有 2. 抛物线的图象与轴一定相交,交点坐标为,; 3. 二次函数常用解题方法总结: 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数中,的符号,或由二次函数中,的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.抛物线与轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根抛物线与轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根抛物线与轴无交点二次三项式的值恒为正一元二次方程无实数根. 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内典型例题例1. (2011浙江省舟山,15,4分)如图,已知二次函数的图象经过点(1,0),(1,2),当随的增大而增大时,的取值范围是 (第15题)(1,-2)-1例2. (2011 浙江湖州,15,4)如图,已知抛物线经过点(0,3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间你所确定的b的值是 例3. (2011宁波市,16,3分)将抛物线yx的图象向上平移1个单位,则平移后的抛物线的解析式为 例4. (2011广东茂名,15,3分)给出下列命题:命题1点(1,1)是双曲线与抛物线的一个交点命题2点(1,2)是双曲线与抛物线的一个交 点命题3点(1,3)是双曲线与抛物线的一个交点请你观察上面的命题,猜想出命题(是正整数): 例5. (2011山东枣庄,18,4分)抛物线上部分点的横坐标,纵坐标的对应值如下表:x21012y04664从上表可知,下列说法中正确的是 (填写序号)抛物线与轴的一个交点为(3,0); 函数的最大值为6;抛物线的对称轴是; 在对称轴左侧,随增大而增大解答题类型(出题技巧)例6. (2011湖南怀化,22,10分)已知:关于x的方程(1) 当a取何值时,二次函数的对称轴是x=-2;(2) 求证:a取任何实数时,方程总有实数根.例7. (2011江苏南京,24,7分)(7分)已知函数y=mx26x1(m是常数)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;若该函数的图象与x轴只有一个交点,求m的值例8(2011四川绵阳24,12)已知抛物线:y=x-2x+m-1 与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求证是ABC是等腰直角三角形;(3)将此抛物线向下平移4个单位后,得到抛物线C,且与x 轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C上求点P,使得EFP是以EF为直角边的直角三角形. 例9. (2011湖南湘潭市,25,10分)(本题满分10分)如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). OCBA 求抛物线的解析式; 在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.例10(2011湖北荆州,22,9分)(本题满分9分)如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴是,B(4,2),一次函数的图象平分它的面积,关于x的函数的图象与坐标轴只有两个交点,求m的值.第22题图测试A组 基础练习1某工厂第一年的利润为20(万元),第三年的利润y(万元),与平均年增长率x之间的函数关系式是 .2在下列函数关系式中,哪些是二次函数(是二次函数的在括号内打上“”,不是的打“x”). (l)y=-2x2 ( ) (2)y=x-x2 ( ) (3)y=2(x-1)2+3 ( ) (4)y=-3x2-3 ( ) (5) s=a(8-a) ( )3说出下列二次函数的二次项系数a,一次项系数b和常数项c (1)y=x2中a= ,b= ,c= ; (2)y=5x2+2x中a= ,b= ,c= ; (3)y=(2x-1)2中a= ,b= ,c= ;4已知二次函数y=x2+bx-c,当x=-1时,y=0;当x=3时,y=0,则b= ;c= .B组 提高训练5.已知正方形边长为3,若边长增加x,那么面积增加y,则y与x的函数关系式是 .6.在半径为4cm的圆面上,从中挖去一个半径为x的同心圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为 .课外拓展练习A组 基础练习1.当m是何值时,下列函数是二次函数,并写出这时的函数关系式(1)y=,m= ,y= ;(2) y=,m= ,y= ;(3) y=,m= ,y= .2.函数y=ax2+bx+c(a,b,c是常数)问当a,b,c满足什么条件时: (l)它是二次函数 ;(2)它是一次函数 ;(3)它是正比例函数 ;B组 提高训练3已知二次函数y=ax2+bx+c(a0),若x=0时y=1;x=1时y=1;x=2时y=-1.求这个二次函数关系式.4已知二次函数y=ax2+bx+c(a0),若x=1时y=3;x=-1时y=4;x=-2时y=3.求这个二次函数关系式.5、一名学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系为.(1)画出函数的图象.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级语文下册 第一单元 1 邓稼先说课稿 新人教版
- 2025年面试时劳动合同应注意条款
- 3.3生态系统的物质循环教学设计-2024-2025学年高二上学期生物人教版选择性必修2
- 2025上海市电梯定期检查与维修服务合同
- 2025农产品采购合同书
- 第十二课 用表格为网页布局说课稿-2025-2026学年初中信息技术浙教版2013八年级上册-浙教版2013
- 2024-2025学年新教材高中语文 第三单元 9.1 说“木叶”说课稿 部编版必修下册
- 居民集中供热(热计量计费)合同协议
- 国有土地租赁合同
- 鲁科版高中物理必修一第2章第3节《匀变速直线运动实例-自由落体运动》教学设计
- 2025年常州市规划馆公开招聘工作人员1人考试参考题库及答案解析
- 2025年校外培训机构应急疏散预案
- 2025年年公租房租赁合同范本
- 燃气轮机介绍课件
- 2022年国家公务员考试申论真题及答案解析(地市级)
- 名师成长的路径与修炼(教师版)课件
- 案外人执行异议之诉课件
- 西方经济学导论全套课件
- “基础教育精品课”PPT课件模板
- 第8部分消防设施标识可视化
- 通用顶管监理规划
评论
0/150
提交评论