关于高分子材料概论的论文.doc_第1页
关于高分子材料概论的论文.doc_第2页
关于高分子材料概论的论文.doc_第3页
关于高分子材料概论的论文.doc_第4页
关于高分子材料概论的论文.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于高分子材料概论的论文 篇一:高分子材料概论论文-张炜 【摘要】随着材料成为当今科学技术的四大支柱之一,了解和掌握高分子成为热点之一!而越来越多的高分子材料被发现利用,人们对其性能要求更加高,所以热塑性聚氨酯弹性体也成为利用较广之一! 【关键词】热塑性聚氨酯弹性体、性能、用途 热塑性聚氨酯弹性体是一种新型的高分子化合物,英文商品名:Flexiblepolyurethane,是一种各项性能优异,可以代替橡胶rubber,软性聚氯乙烯材料pvc,优异的物理性能,例如耐磨性,回弹力都好过普通聚氨酯,PVC,耐老化性好过橡胶橡胶,可以说是替代PVC和PU的最理想的材料简称TPU。 一,TPU的基本性能: TPU作为弹性体是介于橡胶和塑料之间的一种材料,这从它的刚性看出来,TPU的刚性可由弹性模量来度量。橡胶的弹性模量通常在110Mpa,TPU在101000Mpa,塑料(尼龙,ABS,PC,POM)在100010000Mpa。TPU的硬度范围相当宽,从ShoreA60ShoreD80并且在整个硬度范围内具有高弹性;TPU在很宽的温度范围内-40120,具有柔性,而不需要增塑剂;TPT对油类(矿物油,动植物油脂和润滑油)和许多溶剂有良好的抵抗能力;TPU还有良好的耐天候性,极优的耐高能射线性能。众所周知的耐磨性,抗撕裂性,屈扰强度都是优良的;拉伸强度高,伸长率大,长期压缩永久变形率低等都是TPU的显著优点。 力学性能:TPU弹性体的力学性能主要包括:硬度,拉伸强度,压缩性能,撕裂强度,回弹性和耐磨性能,耐屈扰性等,而TPU弹性塑料的力学性能,除这些性能外,还有较高剪切强度和冲击功等。 (a)硬度:硬度是材料抵抗变形,刻痕和划伤的能力的一种指标。TPU硬度通常用邵尔A(ShoreA)和邵尔D(shoreD)硬度计测定,邵尔A用于比较软的TPU,邵尔D用于较硬的TPU。硬度主要由TPU结构中的硬段含量来决定,硬段含量越高,TPU的硬度就会随之上升。硬度上升后,TPU的其他性能也会发生改变,拉伸模量和撕裂强度增加,刚性和压缩应力(负荷能力)增加,伸长率降低,密度和动态生热增加,耐环境性能增加。TPU的硬度与温度存在一定关系。从室温冷却降温至突变温度(-4-12),硬度无明显变化;在突变温度下,TPU硬度突然增加而变得很硬并失去弹性,这是由于软段结晶作用的结果。 (b)硬度与定伸应力和伸长率的关系以及硬度与撕裂强度的关系。随着TPU硬度的增加,100%定伸应力和300%定伸应力迅速增加,伸长率下降。这是由于硬度的增加主要是由于硬段含量增加的结果。硬段含量高,其所形成硬段相越易形成次晶或结晶结构增加了物理交联的数量而限制材料变形。若使材料变形必须提高应力,从而提高了定伸应力,同时伸长率下降。TPU硬度与撕裂强度的关系,随硬度增加,撕裂强度迅速增加,其理由亦与模量的解释相同。 (b)TPU的拉伸性能:拉伸性能是指单向拉伸,即应力-应变性能。从TPU的应力-应变曲线可以获得这些信息:拉伸强度(TensileStrength,单位:Mpa),断裂伸长率(Elongation,单位:%),定伸应力(定伸模量,单位:Mpa),等等。 拉伸性能与温度的关系,以Texin480AR商品为例,两组曲线分别为高温(23121)和低温(050)的拉伸应力-应变曲线。不难看出,在23时它是弹性体,在121时成为软橡胶,在-50又呈现弹性塑料。在应力不变情况下,拉伸应力随温度的增加而下降。这是由于TPU硬段微区随着温度增加而逐渐软化以及硬段软段混合度的增加导致拉伸应力的下降。 二,用途 各种TPU成型品的用途: 1,汽车部件:球型联轴节;防尘盖;踏板刹车器;门锁撞针;衬套板簧衬套;轴承;防震部件;内外装饰件;防滑链等; 2,机械工业用部件:各种齿轮;密封件(主要起耐磨和耐油作用);防震部件;取模针;衬套;轴承;盖类;连接器;橡胶筛;印刷胶辊等; 3,服饰辅料:女士文胸肩带、服装松紧带等。 4,鞋类:垒球鞋、棒球鞋、高尔夫球鞋、足球鞋鞋底及鞋前掌;女士鞋后跟;滑雪靴;安全靴,高档鞋底等; 5,电线电缆;电力通信电缆;计算机配线;汽车配线;勘探电缆等 6,其他:自位轮;把手;表带等;管材软管高压管;医疗管;油压管;气压管;燃料管;涂敷管;输送管;消防水带等;薄膜板材;转动带(具有一定的拉伸作用) 气垫;膜片;键盘板;复合布等;各种环形管线;圆形带;V型带;同步带;防滑带等;软体槽、罐类;薄膜复合片材箱包面料等;各种车辆用箱类;各种容器类超薄、宽幅薄膜(医疗、卫生用品)熔接料;粘接剂;人造革、合成革、绳、铁丝、手套等涂层等。小结:了解学习更多的材料知识,在将来对材料的选择有很大的帮助,对于我们学习机械方面更能开阔知识面能更好的利用资源去完成工作! 篇二:功能高分子材料概论论文 1生物医用高分子材料的现状 生物医用高分子材料(Poly-mericbiomaterials)是指在生理环境中使用的高分子材料1,它们中有的可以全部植入体内,有的也可以部分植入体内而部分暴露在体外,或置于体外而通过某种方式作用于体内组织。医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内2。因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性3。生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能;具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的、复杂的形态4。 2医用高分子材料的特殊要求 医用高分子材料是要用在人身上的,必须对人体组织无害,所以对其要求十分严格,总体上可以概括为以下四个方面: 1)生物功能性:因各种生物材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。 2)生物相容性:可概括为材料和活体之间的相互关系,主要包括血液相容性和组织相容性。组织相容性主要指无毒性,无致癌性,无热原反应,无免疫排斥反应,不破坏邻近组织等。血液相容性一般指不引起凝血,不破坏红细胞,不破坏血小板,不改变血中蛋白,不扰乱电解质平衡。 3)化学稳定性:耐生物老化性或可生物降解性。对于长期植入的医用高分子材 料,生物稳定性要好;对于暂时植入的医用高分子材料,则要求在确定时间内降解为无毒的单体或片段.通过吸收、代谢过程排出体外。 4)生产加工性:首先,严格控制用于合成医用高分子材料的原料纯度,不能带入有害物质,重金属含量不能超标;其次,材料加工助剂必须符合医用标准;第三,对于体内应用的高分子材料,生产环境应当具有符合标准的洁净级别;第四,便于消毒灭菌(紫外灭菌、高压煮沸、环氧乙烷气体消毒和酒精消毒等)。正因为对于医用高分子材料的要求严格,相关的研发周期一般较长,需要经过体外实验、动物实验、临床实验等不同阶段的试验,材料市场化需要经国家药品和医疗器械检验部门的批准,且报批程序复杂,费用高。这也是生物材料的市场价格居高不下的一个重要原因。 3生物医用高分子材料的种类 生物医用高分子材料按性质可分为非降解和可生物降解两大类。非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。因此,在这里主要讨论可生物降解医用高分子材料的种类。 根据来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。 4生物医用高分子材料的应用 根据不同的角度、目的甚至习惯,医用高分子材料应用有不同的分类方法,尚无统一标准。主要在人造器官、人造组织、以及其它的一些高分子药剂等。 4.1人造器官 (1)人工肾:四十年前荷兰医生用赛璐洛玻璃纸作为透析膜,成功地滤除了患者血液中的毒素。目前人工肾以中空丝型最为先进,其材质有醋酸纤维,赛璐洛和聚乙烯醇。其中以赛璐路居多,占98%,它是一种亲水性的、气体和水都能通过的材料,同时要求有很好的选择过滤性,病人的血液从人工肾里流过由它们所构成的中空丝膜,就可将尿素、尿酸,Ca2+等物质通过,并留在人工肾里继而排出,而人体所需的营养、蛋白质却被挡住,留在血液里返回人体,从而对血液起到过滤作用,目前中空纤维膜已在西德的恩卡公司、日本旭化成和夕沙毛公司研究成功,并用于工业化生产。 (2)人工肺:人工肺并不是对于人体肺的完全替代,而是体外执行血液氧交换功能的一种装置,目前以膜式人工肺最为适合生理要求,它是以疏水性硅橡胶,聚四氟乙烯等高分子材料制成。 (3)人工心脏:1982年美国犹他大学医疗中心,成功地为61岁的牙科医生克拉克换上了Jarvak一7型人工心脏,打破了人造心脏持久的世界纪录,美国人工心脏专家考尔夫博士指出闭,人工心脏研制成功与否取决于找到合适的弹性体,作为人工心脏主体心泵的高分子材料,现在所用的材料主要为硅橡胶。 (4)其它,如人工心脏瓣膜、心脏起搏器电极的高分子包覆层、人工血管、人工喉、人工气管、人工食管、人工膀胱等。 4.2人造组织 指用于口腔科、五官科、骨科、创伤外科和整型外科等的材料,包括: (1)牙科材料:主要采用聚甲基丙烯酸甲酯系、聚砜和硅橡胶等,如蛀牙填补用树脂、假牙和人工牙根、人工齿冠材料和硅橡胶牙托软衬垫等; (2)眼科材料:这类材料特别要求具有优良的光学性质、良好的润湿性和透氧性、生物惰性和一定的力学性能,主要制品有人工角膜(PTFE、PMMA)、人工晶状体(硅油、透明质酸水溶液)、人工玻璃体、人工眼球、人工视网膜、人工泪道、隐型眼镜(PMMA、PHEMA、PVA)等; (3)骨科材料:人工关节、人工骨、接骨材料(如骨钉)等,原材料主要有高密度聚乙烯、高模量的芳香族聚酰胺、聚乳酸、碳纤维及其复合材料; (4)肌肉与韧带材料:人工肌肉、人工韧带等,原材料有PET、PP、PTFE、碳纤维等; (5)皮肤科材料:人工皮肤,含层压型人工皮肤、甲壳素人工皮肤、胶原质人工皮肤、组织膨胀器。 4.3药用高分子 (1)高分子缓释药物载体:药物的缓释是近年来人们研究的热点。目前的部分药物尤其是抗癌药物和抗心血管病类药物(如强心苷)具有极高的生物毒性而较少有生物选择性,通常利用生物吸收性材料作为药物载体,将药物活性分子投施到人体内以扩散、渗透等方式实现缓慢释放。通过对药物医疗剂量的有效控制,能够降低药物的毒副作用,减少抗药性,提高药物的靶向输送,减少给药次数,减轻患者的痛苦,并且节省财力、人力、物力。目前存在时间控制缓释体系(如“新康泰克”等,理想情形为零级释放)、部位控制缓释体系(脉冲释放方式)。近年来研究较多的是利用聚合物的相变温度依赖性(如智能型凝胶),在病人发烧时按需释放药物,还有利用敏感性化学物质引致聚合物相变或构象改变来释放药物的物质响应型释放体系。 (2)高分子药物(带有高分子链的药物和具有药理活性的高分子):如抗癌高分子药物(非靶向、靶向)、用于心血管疾病的高分子药物(治疗动脉硬化、抗血栓、凝血)、抗菌和抗病毒高分子药物(抗菌、抗病毒、抗支原体感染)、抗辐射高分子药物、高分子止血剂等。将低分子药物与高分子链结合的方法有吸附、共聚、嵌段和接枝等。第一个实现高分子化的药物是青霉素(1962年),所用载体为聚乙烯胺,以后又有许多的抗生素、心血管药和酶抑制剂等实现了高分子化。天然药理活性高分子有激素、肝素、葡萄糖、酶制剂等。 5生物医用高分子材料的发展方向 (1)可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视,无论是作为缓释药物还是作为促进组织生长的骨架材料,都将得到巨大的发展。 (2)1906年Enrililich首次提出药物选择性地分布于病变部位以降低其对正常组织的毒副作用,使病变组织的药物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论