




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
构造与论证1、有一把长为9厘米的直尺,你能否在上面只标出3条刻度线,使得用这把直尺可以量出从1至9厘米中任意整数厘米的长度? 分析:可以。(1)标3条刻度线,刻上A,B,C厘米(都是大于1小于9的整数),那么,A,B,C,9这4个数中,大减小两两之差,至多有6个:9-A,9-B,9-C,C-A,C-B,B-A,加上这4个数本身,至多有10个不同的数,有可能得到1到9这9个不同的数。(2)例如刻在1,2,6厘米处,由1,2,6,9这4个数,以及任意2个的差,能够得到从1到9之间的所有整数:1,2,9-6=3,6-2=4,6-1=5,6,9-2=7,9-1=8,9。(3)除1,2,6之外,还可以标出1,4,7这3个刻度线:1,9-7=2,4-1=3,4,9-4=5,7-1=6,7,9-1=8,9。另外,与1,2,6对称的,标出3,7,8;与1,4,7对称的,标出2,5,8也是可以的。 2、一个三位数,如果它的每一位数字都不超过另一个三位数对应数位上的数字,那么就称它被后下个三位数“吃掉”。例如,241被352吃掉,123被123吃掉(任何数都可以被与它相同的数吃掉),但240和223互相都不能被吃掉。现请你设计6个三位数,它们当中任何一个都不能被其它5个数吃掉,并且它们的百位数字只允许取1,2,3,4。问这6个三位数分别是多少? 分析:6个三位数都不能互吃,那么其中任意两个数,都不能同时有2个数位相同。由于百位只取1,2,十位只取1,2,3,所以,只能让3个数百位是1,另外3个数百位数是2。百位是1的3个数,分别配上十位1,2,3;百位是2的3个数同样。这样先保证前两位没有完全一样的。即:11*,12*,13*,21*,22*,23*。11*最小,个位应取取最大的,4,它要求另外5个数个位均小于4。11412*较小,个位应取3,它要求前两位能吃12*的数,个位小于3。12313*个位取2,就不能吃前两数,同时它要求前两位能吃13*的数个位小于2。13221*较小,个位应取3,才能不被23*和22*吃。21322*个位取2即可。22223*各位必须取1。231所以这6个数是114,123,132,213,222,231。 3、盒子里放着红、黄、绿3种颜色的铅笔,并且规格也有3种:短的、中的和长的。已知盒子的铅笔,3种颜色和3种规格都齐全。问是否一定能从中选出3支笔,使得任意2支笔在颜色和规格上各不相同? 分析:如果能选出3支笔,使得任意2支笔在颜色和规格上各不相同,则这3支笔必须包含红、黄、绿,短、中、长这6个因子,即不能有重复因子出现。但是这种情况并不能保证出现。例如,盒子中有4种笔:红短,黄短,绿中,绿长,3种颜色和3种规格都齐全,由于红和黄只出现1次,必须选,但是这时短已经出现2次,必然无法满足3支笔6个因子的要求。所以,不一定能选出。4、一个立方体的12条棱分别被染成白色和红色,每个面上至少要有一条边是白色的,那么最少有多少条边是白色的? 分析:立方体的12条棱位于它的6个面上,每条棱都是两个相邻面的公用边,因此至少有3条边是白色的,就能保证每个面上至少有一条边是白色。如图就是一种。 5、国际象棋的皇后可以沿横线、竖线、斜线走,为了控制一个44的棋盘至少要放几个皇后? 分析:22棋盘,1个皇后放在任意一格均可控制22=4格;33棋盘,1个皇后放在中心格里即可控制33=9格;44棋盘,中心在交点上,1个皇后不能控制两条对角线,还需要1个皇后放在拐角处控制边上的格。所以至少要放2个皇后。如图所示。 6、在如图10-1所示表格第二行的每个空格内,填入一个整数,使它恰好表示它上面的那个数字在第二行中出现的次数,那么第二行中的5个数字各是几? 分析:设第二行从左到右填入A,B,C,D,E,则A+B+C+D+E=5 若E大于0,如E=1,则B=1,A+C+D=3,小于4,矛盾,可得:E=0,A大于0小于4; 若D大于0,如D=1,则B大于0,因A大于0,则A和C无法填写,所以D=0,A必等于2; A=2,可知B+C=3,只有当B=1,C=2时,ABCDE=21200,符合要求。 所以第二行的5个数字是2,1,2,0,0。 7、在100个人之间,消息的传递是通过电话进行的,当甲与乙两个人通话时,甲把他当时所知道的信息全部告诉乙,乙也把自己所知道的全部信息告诉甲。请你设计一种方案,使得只需打电话196次,就可以使得每个人都知道其他所有人的信息。 分析:给100个人分别编号1-100,他们知道的消息也编上相同的号码。 (1)2-50号每人给1号打1次电话,共49次,1,50号得到1-50号消息。同时,52-100号每人给51号打1次电话,共49次,51,100号得到51-100号消息。 (2)1号和51号通1次电话,50号和100号通1次电话,这时1,50,51,100号这4个人都知道了1-100号消息。 (3)2-49号,52-99号,每人与1号(或者50,51,100号中的任意1人)通1次话,这96人也全知道了1-100号消息。 这个方案打电话次数一共是(49+49)+2+96=196(次)。 8、有一张88的方格纸,每个方格都涂上红、蓝两色之一。能否适当涂色,使得每个34小长方形(不论横竖)的12个方格中都恰有4个红格和8个蓝格? 分析:能。34=12,有4红8蓝,即红1蓝2,横竖方向都按这个规律染成下图的样子。 9、桌上放有1993枚硬币,第一次翻动1993枚,第二次翻动其中的1992枚,第三次翻动其中的1991枚,依此类推,第1993次翻动其中的一枚。能否恰当地选择每次翻动的硬币,使得最后所有的硬币原先朝下的一面都朝上? 分析:可以。 按要求一共翻动1+2+3+1993=1993997,平均每个硬币翻997次,是奇数。而每个硬币翻奇数次,结果都是把原来朝下的一面翻上来。因为:1993997=1993+(1992+1)+(1991+2)+(997+996) 所以,可以这样翻动: 第1次翻1993个,每个全翻1次; 第2次与第1993次(最后1次)一共翻1993次,等于又把每个翻了一遍; 第3次与第1992次(倒数第2次),第4次与第1991次,第997次与第998次也一样,都可以把每个硬币全翻1次。这样每个都翻动了997次,都把原先朝下的一面翻成朝上。10、能否在55方格表的各个小方格内分别填入数1,2,24,25,使得从每行中都可以选择若干个数,这些数的和等于该行中其余各数之和? 分析:不能。 假设可以使每行中都可以选择若干个数,这些数的和等于该行中其余各数之和,那么每行数的和一定为偶数,5行之和也必定为偶数。1+2+3+25的和是奇数,不符合要求,假设的情况不能出现。11、把图10-2中的圆圈任意涂上红色或蓝色。问:能否使得在同一条直线上的红圈数都是奇数? 分析:不能。 假设每条直线上的红圈数都是奇数,五角形有五条边,奇数之和是奇数,则五条线上的红圈,包括重复,共有奇数个。另一方面,每个圈为两线交点,每个圆圈算了两次,总个数为偶数。两者矛盾,假设不成立。所以,不能使同一条直线上的红圈数都是奇数。 12、在99枚外观相同的硬币中,要找出其中的某些伪币。已知每枚伪币与真币的重均相差奇数克,而所给硬币的总重量恰等于99枚真币的重量。今有能标明两盘重量之差的天平,证明:只要称一次即可辨别出预先选择的一枚硬币是否伪币。 分析:已知每枚伪币与真币的重均相差奇数克,99个硬币总重量恰等于99枚真币的重量,说明伪币数为偶数。 如果拿出1个真币,剩下的98个里还是有偶数个伪币,随便分成两部分放天平上,重量之差必为偶数。 如果拿出1个伪币,剩下的98个里是有奇数个伪币,随便分成两部分放天平上,重量之差必为奇数。所以,只要把98个硬币分两部分在天平上称,显示出的重量差只要是奇数,拿出来的那个一定是伪币。13、在象棋比赛中,胜者得1分;败者扣1分;若为平局,则双方各得0分。今有若干名学生进行比赛,每两个人之间都赛一局。现知,其中一个学生共得7分,另一个学生共得20分。试说明,在比赛过程中至少有过一次平局。 分析:设7分者胜X局,负Y局;20分者胜M局,负N局,则有X-Y=7,M-N=20 假设没有1次平局,那么由于比赛局数相同,得到:X+Y=M+N,X+Y+M+N为偶数。 另一方面,因为X-Y=7,X和Y两个数奇偶性不同,两者之和为奇数;又因为M-N=20,可知M和N奇偶性相同,那么M+N为偶数。得出的结果是:X+Y+M+N之和为奇数。矛盾。说明没有平局的假设不成立。所以,比赛过程中至少有一次平局。 14、如图10-3,在33的方格表中已经填入了9个整数。如果将表中同一行同一列的3个数加上相同的整数称为一次操作。问:你能否通过若干次操作使得表中9个数都变为相同的数? 分析:不能。 如果进行操作后,表中9个数能变为相同的数,其和必能整除3;因为每次操作是同一行或同一列的3个数加上相同的整数,增加的数也能整除3。那么,原来表中的9个数的和也必能整除3。把表中的9个数相加,2+3+5+13+11+7+17+19+23=100,100不能整除3,与假设矛盾,所以不能实现。15、今有长度为1,2,3,198,199的金属杆各一根,能否用上全部的金属杆,不弯曲其中的任何一根,把它们焊成接成 (1)一个正方体框架?(2)一个长方体框架? 分析:(1)不能。 正方体有12条棱,金属杆长度之和能被12整除时,才能不弯曲任何一根焊成正方体框架。1+2+3+199=19900
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可视对讲合同范本5篇
- 湖南省常德市2016年秋赛课说课稿人教版九年级上册第六单元课题2 二氧化碳制取的研究 鼎城
- 2025YY房屋租赁合同终止协议书
- 乌海事业单位笔试真题2025
- 2025基因技术服务合同书
- 任务三 了解水温控制说课稿-2025-2026学年小学信息技术(信息科技)六年级下册桂科版(信息科技)
- 2025中介借款合同范本
- 第十五课 网站的测试、发布与评价说课稿-2025-2026学年初中信息技术教科版八年级上册-教科版
- 2025买卖见证合同示范文本
- 德州事业单位笔试真题2025
- 国开(河北)2024年秋《现代产权法律制度专题》形考作业1-4答案
- 口耳目手足课件
- 2024-2025学年湖北省武汉二中广雅中学九年级上学期9月月考数学试题及答案
- 箱式变电站技术规范应答
- 2024年新北师大版七年级上册数学教学课件 第三章 整式及其加减 1 代数式 第1课时 代数式
- 2024 年甘肃省职业院校技能大赛高职组公共管理与服务类人力资源服务赛项竞赛规程
- NB-T+35056-2015-水电站压力钢管设计规范
- 集成电路制造工艺原理集成电路制造工艺原理模板
- 访学归来讲座课件
- 《肠造口术后并发症护理研究进展综述》7400字
- 学校食堂食品安全主体责任
评论
0/150
提交评论