基坑设计浅探.doc_第1页
基坑设计浅探.doc_第2页
基坑设计浅探.doc_第3页
基坑设计浅探.doc_第4页
基坑设计浅探.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

I. 深基坑支护设计浅探1、深基坑支护类型选择 随着建筑业的发展,高层建筑如雨后春笋,但高层建筑的基础埋设较深,而相邻建筑的安全,对深基坑支护的要求越来提高,我公司承建的永和花苑工程高33层,地下室两层,埋深11米,所以深基坑支护成了施工中的关键,不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。 根据工程区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层锚杆一排作单支撑,端部在地面以下2.00mm,下倾18,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。 2、深基坑支护土压力 深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为: 主动土压力: E=1/2H2tg2(45-/2)-2CHtg(45-/2)+2C2/ 工中:E主动土压力(KN),土的容重,采用加权平均值。H挡土桩长(m)。土的内摩擦角()。C土的内聚力(KN)。 被动土压力:EP=1/2t2KPCt 式中:EP被动土压力(KN),t挡土桩的入土深度(m),KP被动土压力系数,一般取K2=tg2(45-/2)。 由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足工程上的使用要求,这也就是从以下几个方面具体考虑: 2.1.土压力参数:尤其抗剪强度C/的取值问题。抗剪强度指标的测定方法有总应力法和有效应办法,前者采用总应力C、值和天然重度(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、及浮容量计算土压力,另解水压力,即是水土分算。总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。 2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力偏大。因此采用库仑理论中的被动土压力系数擦角,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=CosDCosKF)-Sin(o+)Sino2式中是按等值内摩擦角计算,对粘性土取D=是根据经验取值,一般为1/3-2/3。 2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚力的主动土压力E,计算式为:E=1/2CHtg2(45-/2)+2C2/。 用等值内摩擦角时,按无粘性土三角形土压力并入o,E=1/2H2tg(45-/ 2),而E=E由此可得:tg(45-SX(o2= rH2tg2(45-/2)-4CHtg(45-/2)+4C2/r2rH2 2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大,而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。 2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。 综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方式计算: 2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水处理,故认为此压力采用水土合算是可行的。 2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:E=1/2H2tg2(45-/2)-2CHtg(45-/2)+2C2/桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP1/2t2KP+2KP Ct. 式中:KPCosCos-Sin(+)Sin2 3、护坡桩的设计 该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm,桩间净距为1000mm.考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m,: 3.1.桩上侧土压力:桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以计算时采用加权平均值的C、,=21.32,得:E=4.7H2-2.76H+108.49;桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均值的C、,得:EP33.89676t2+104.5t;均布载荷对桩的侧压力:由公式EqqKaH,得:Eq=18.672H. 3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。 3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:MA=0 所以有:1KEP(23t+h-a)=Eq23 (h+t)-a+Ep(h+t2-)q 式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12 3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m. 根据建筑结构设计手册及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.21.99=12.4(m) 3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉力,FA=0,即:E+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN) 4、土层锚定设计 锚固点埋深=2m,锚杆水平间距1.6m,锚杆倾角18,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。 4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kp=20.72r=20 .13kN/m2 4.1.1.土层锚杆锚非固端段长度的确定: 由三角关系有:BF=sin(45-/2)/sin(45-/2+a)(H-a-d)代入数据计算得:BF=5.06 m4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式计算:r=C+(1/2)rhtg。式中:r埋深h处的抗剪强度,K安全系数1.5,d锚杆孔径,取0.12m,锚固段长度L=17.98m 5、结论 由于在设计阶段充分考虑了各方面因素,使该工程深基坑支护施工取得了较好效果。深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。 九、施工位移监测1观测点布设要求沿基坑周边每隔15m设置一个观测点,观测点位置尽量选在基坑边缘或临近建筑物的外墙上。观测点要作好保护措施或做出明显的标记及序号。对已经有裂隙的建筑物或管道地下设施,要配合有关单位提前测量记录、做出标记,或拍摄照片记录。2位移观测要求采用经纬仪或钢尺,或百分表做观测仪器。测量精度要求二等精度,精确到0.01mm。位移量控制要求S22.3mm。3观测方法在远离基坑边线30m外选定基准点,在基坑周边设定8个观测点,并记录观测点到基准点之间距离的原始数据。每次观测结果与原始数据的差值即为总的位移量。根据时间与位移增量绘制位移曲线当前基坑围护设计中的问题及对策作者: 来源:发布时间:2007/06/22摘要:本文针对当前基坑工程因设计问题而造成工程事故或浪费的现状问题,分析了产生问题的原因,指出设计方法存在的缺陷,并针对问题提出了对策。随着高层建筑的增多和城市用地的日益减少,基坑工程设计和施工涉及的地质条件、岩土性质、场地环境、工程要求、地下水动态、施工顺序和方法 等许多问题越趋复杂,使基坑的开挖和围护结构的设计成为一个具有挑战性的岩土工程热门难题。而基坑工程的迅猛涌现与相应设计理论和方法的滞后,给基坑围结 构护设计工作带来了极大的因难,也使基坑工程的设计与工程实际状况存在较大偏差,其结果是造成工程事故或浪费。1、当前基坑围护设计现状当前基坑工程的围护结构设计方法可谓种类繁多,众采纷纭,形成了多种设计方法并存的局面。但综观基坑工程实际,传统设计方法因具有理论上容 易理解和接受、计算模型简单、计算方便快捷等特点,在工程实际广为工程设计人员所习用。实际运用中又多是采用一种经验估算,这里所谓经验估算就是按照以往 的工程经验,结合土质的特性,选定挡土围护结构类型及入土深度,事先确定挡土结构上的土压力分布,然后根据极限平衡理论(如等值梁、静力平衡等方法)进行 图解、数值解或查取已有表格来确定支护结构的内力和变形。这种传统设计理论和方法是当前基坑工程设计的主流。随着基坑工程日趋复杂化以及计算机的应用,许多岩土工作者又热衷于数值分析方法的应用,如土抗力法,差分法,边界元法和有限元法等新方法, 并且不少科研机构和高校基于不同分析模型开发了一些应用软件,应该说这对设计人员是有帮助的。但是这些方法在理论上尚需完善,关键是在如何选取土的本构关 系与计算模型,土的参数如何确定,以及塑性区范围与稳定性之间的定量关系等问题上仍然存在困难,因此尚无直接用平面有限元的计算结果作为设计依据的实例。目前新方法尚未能作为围护结构设计的基本方法,多作为某些重大工程问题处理时的一种辅助的分析手段,以进行对比。尽管基坑工程实践不断增多,在技术上也有了长足的进步。但纵观基坑工程的实际情况不难发现,基坑围护设计存在着两种倾向,一方面由于设计安 全度不足而造成基坑失稳事故的比例较大,另一方面由于设计过于保守而又造成很大的浪费。一项对103项基坑工程事故进行细致的调查分析,统计出事故发生的 原因,结果表明与设计有关的工程事故比例高达45%1;而一份十几个工程的测试数据又表明,围护结构的实测应力明显小于设计值,围护结构的强度远远没有发挥出来2,设计明显过于保守。说明现行设计理论和方法与基坑工程的实际有较大的偏差,确实应在设计方法及其影响因素等方面找找原因。2、 原因分析大量的工程实例表明,上述两种情况在实际中确实屡见不鲜,究其原因可归结为以下两个方面:1)计算以强度和稳定性为主,忽略变形控制上面提到,当前的设计方法是以极限平衡理论为依据。实际上大多沿用传统挡土墙设计计算方法,它只能进行强度和稳定性计算,无法提供基坑围护结构设计所必须的变形值。所以基坑设计计算均以强度和稳定性为主,而并未研究解决在边坡失稳之前的变形过程。但在当前的基坑工程中,由于周边环境保护的要求越来越严 格,基坑变形控制已成为重要的设计内容。基坑的允许变形和水平、垂直位移的计算是一个较建筑自身允许沉降和沉降计算更为复杂的课题,又是基坑工程,尤其在软土地区和工程地质、水文地质复杂地区无法回避的问题。基坑工程仍然必须满足稳定性和变形两方面的要求,与基础允许沉降有所不同在于基坑工程的允许变形往 往主要取决于周边环境的要求,按变形控制已成为许多基坑工程设计的基本依据。可见,现行的设计方法并不能完全考虑基坑工程实际应考虑的问题,这样设计结果与实际工程的工作状态就必然产生差异。2)设计多以经验估算为主由于基坑工程的复杂性、不确定性以及对围护结构所承受水土压力认识的局限性,迄今为止对基坑围护结构设计还没有一个成熟的理论和计算模式, 未形成完整的、具有普遍指导意义的设计理论体系,使得基坑围护结构的设计计算仍过多地取决于经验,随意性较大;另一方面,由于土力学发展水平所限,有些实 际问题土力学理论尚无法解决,在研究运用中不得不对土的性质作了许多不符实际简化或假定。例如,对基坑工程经常遇到的软土,其强度随时间变化的流变性质, 虽然已有一些研究成果,但理论上尚不成熟,试验方法尚不完善,应用于工程还刚刚开始,实际中还需要经验;对于非饱和土,应用非饱和理论进行土压力计算还未 开始,目前用的还是传统的土力学理论,常规试验方法测定的强度指标,计算结果自然与实际出入很大;再如某些饱和粉土的流动性、地下水的渗透破坏等等,有的 问题至今对其认识还很不够,有的问题很难计算。在这种情况下,基坑工程设计依靠经验是必然的了,而且有时经验显得十分的重要。应该说经验是长期工程实践中积累的宝贵财富,基坑围护设计和 施工,应该充分借鉴现有的成功经验,融入自身的特点和要素才能有所创新。但经验总归是经验,并不能等同于具有普遍指导意义的理论,况且基坑工程具有较强的 区域性,不同地区会遇到各种不同的、包含极其复杂的工程地质和水文地质条件、现有的理论和经验根本无法解决的问题。这样基坑围护设计只能借鉴已有的工程经验在实际中摸索,设计结果就难以把握了。3、传统设计理论和方法的缺陷。传统设计方法以库仑朗肯理论为基础,采用极限平衡法求解,它假定作用在围护结构前后墙上的土压力分别达到被动土压力和主动土压力,在此基础上再把超静定的结构力学问题简化为静定问题求解。国内采用较多的有等值梁法和静力平衡法。这种方法应用于基坑围护结构的设计中,存在以下缺点:1)库仑朗肯理论本身包含着与基坑工程实际很不一致的假定;2)难以反映基坑开挖过程中各种因素对墙上土压力分布的影响;3)无法提供设计所需的墙体水平位移的数值,即不能考虑围护结构和土体的变形;4)假定支撑为不动支点,不考虑施工过程中支撑设置前后支撑力的变化,等等。传统设计方法以开挖的最终状态为基础,它至少在以下几个方面与开挖的实际情况是不相符的:1)侧土压力计算问题基坑围护结构土压力具有不确定性,它是土体与围护结构之间相互作用的结果,土压力大小和分布随围护结构类型、刚度、支点数量而异,在开挖过程中随结构的 变形而动态地变化,同时它具有施工效应、时间效应、空间效应等特性,这些是传统挡土墙设计理论无法考虑的问题。土压力只有在主(被)动极限平衡状态下才可 作为已知的定值,而主(被)动极限平衡状态是否达到,与围护结构的位移是密切相关的。在基坑外侧的主动区,围护结构向坑内侧位移量级达(0.10.3)%H后,就可能出现主动极限平衡状态,而基坑内侧的被动区,围护结构要向坑内位移约达(25)%H,才能达到被动极限平衡状态,这样大的位移量又是围护 结构的安全所不允许的,因此该部位作用的实际上不是被动土压力,而是某种土抗力,它随着围护桩墙的位移大小而变化,是个不确定量。在围护结构的设计中,将 不确定土压力当作定值的外荷载来求解围护结构的内力及验算稳定性,其计算结果的不准确是可想而知的。2)围护结构和土体变形问题围护系统和土体的变形是围护结构各部分与土体及外界因素相互作用的反映,是结构内力变化与调整的宏观结果。其特征和数值是整个系统是否正常 工作的最直观的标志,又是突发性事故的前兆,因而是施工控制的主要依据。土层的沉降及位移更直接地影响到周围建筑物、地下管线及道路交通的正常运营。但传 统设计方法由于所采用的是刚塑性模型理论,只能进行强度与稳定分析而难以进行变形计算。虽然目前尚有一些经验方法可进行估算,但有地区局限性并缺乏足够的 理论依据。3)围护结构内力计算问题传统设计方法对有支撑的围护结构设计中,支撑力也是通过开挖最终状态的系统静力平衡条件确定的。而基坑实际施工过程中,支撑是在土层开挖, 围护结构有一定变形后设置的。下一道支撑是在上一道支撑受力变形,基坑继续开挖后设置的,并非同时设置,实际受力条件与设计条件明显相异,其数值理所当然 偏离设计值。围护结构的内力也是按开挖的最终状态的土压力和支撑力计算的。如前所述,侧土压力和支撑力在开挖过程中是不断变化的,围护结构内力也随着改变,而不可能是固定不变的。虽然近来有些工程用增量法进行进行考虑施工过程的内力计算,但因为在内力计算中仍然引用静力平衡条件,而无法考虑形变相容和位 移协调关系,所以仍然是相当粗糙的。综上所述,传统设计理论和方法未能准确的反映基坑工程的真实状况,或者说传统设计理论和方法存在种种缺陷并不完全适用于技术要求越来越高的基坑工程围护设计,这正是设计预估值与实际工作状态存在较大差异的原因所在。4、 问题的对策传统设计理论和方法存在诸多的缺陷使得越来越复杂的基坑工程问题无法妥善解决,新的、更有效的设计理论和方法尚未成熟,在不确定因素太多的 基坑围护体系设计中,结构的安全度就难以把握,要使设计符合实际情况是太难了,至少在目前的技术发展水平上是太难了。工程设计者只有两种选择,一是设计得比较保守,以确保安全而造成浪费;二是要冒较大的风险,以节省投资而将带来事故隐患。不论作何种选择,应该说对工程的安全与经济都难两全。如此情形下,工程设计人员的责任是在设计中采取合理的对策,尽可能地使设计贴近基坑工程的真实状况。实际运用中可从下列两方面考虑:4.1 土压力估算土压力是基坑围护结构的主要荷载,若能较准确地估算土压力,对基坑工程意义十分重大。但由于影响土压力的不确定因素太多,要精确地加以确定是很困难的,甚至是不可能的。当前没有精确的理论来保证其正确可靠性的情况下,可从以下两方面入手:1)通过现场测试和室内模型试验,并依此为基础,提出简单实用而尽可能合理的土压力计算模式。2)计算时着重考虑的因素:土的物理力学性质(重度、抗剪强度);挡土围护结构相对土体的变位方向和大小;地面坡度、地面荷载与邻近基础荷载及可能的动荷载;地下水位及其变化;围护结构的刚度;基坑工程的施工方法与施工顺序等等。4.2 动态设计传统设计方法的主要问题在于一个“静”字,以开挖的最终状态为对象,进行定值的设计。然而基坑开挖工程与其它工程的最大不同之处又在于一个“动”字,在开挖过程中,包含某些土质参数在内的各种参量,诸如侧土压力、结构内力、土体应力及应变等等都在变化,且其变化规律目前还未被充分掌握,这就产生了设计结果与实际情况的差别。对此,比较有效的对策是根据施工过程的信息反馈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论