已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
P1-5文字内容第一页CIRAS-3 便携式光合作用测定系统Portable Photosynthesis System 智能机的先驱者,新行业标准的领导者CIRAS-3型光合仪继承了CIRAS-2型的智能化,人性化等特点,在屏幕显示,环境因子控制,光源控制等多方便进行了全面升级。测定参数:参数中文名称英文名称单位直接测定参数Pn净光合速率Assimilation Ratemol m-2 s-1E蒸腾速率Transportation Rate m mol m-2 s-1Gs气孔导度Stomatal Conductance m mol m-2 s-1Ci细胞间隙CO2浓度Internal CO2 Concentration ppm或mol mol-1VPD水蒸汽压亏缺 Vapour Pressure Deficit mbRd暗呼吸速率Respiration Ratemol m-2 s-1测定环境参数Cr大气CO2浓度Air CO2 Concentrationppm或mol mol-1CdCO2落差Differential CO2 ppmHr大气湿度Air HumiditymbHd湿度落差Differential H2O mbRH相对湿度Relative Humidity %Tl叶片温度Leaf Temp Tc叶室温度Cuvette Air Temp Ap大气压Atmospheric Pressure 百帕Q光合有效辐射PAR Photosynthetically Active Radiationmol m-2 s-1Vm叶室流量Chamber Flow Rate ml min-1 可计算参数CE羧化效率Carboxylation Efficiency%AQY表观量子效率Apparent Quantum Yield%Rp光呼吸Rate of Photorespiratonmol m-2 s-1Isat饱和光强Light Satuation intensitymol m-2 s-1Ic光补偿点Light Compensation Pointmol m-2 s-1CO2补偿点CO2 Compensation Pointppm或mol mol-1Cisat饱和CO2浓度Caturation Ci Concentrationppm或mol mol-1应用领域:主要应用于农学,园艺,植物生理,植物生态,植物栽培学,植物病理学,林学等相关领域第二页CIRAS-3光合仪重要特性: 全球首发第二代双屏智能机 全自动智能校正 半透射LCD主机显示屏: 高清10.2寸彩屏,阳光直射下清晰显示 自动调零查分平衡校正专利技术 全自动校准,保证数据准确,简化操作步骤 全球首款数显叶室: 叶室LCD屏显示实时测定数据 超强红、蓝、绿、白光源: 根据需要任意设置红、蓝、绿、白光比例 智能叶室环境控制系统: 自动控制光强、CO2浓度、温度、湿度等环境因子 多种叶室可选择: 标配三种类型叶室窗口,满足各种作物的需求;可选配土壤呼吸室,群体同化室,果蔬呼吸室,土壤温度探头,光量子探头等。 便携性: 主机体积:27.5cm14.5cm24cm; 重量:4Kg(内置锂电池)第三页多种响应曲线自动测定:图:操作界面友好性展示图:第四页主要技术指标内置四个独立的高精度非分散的红外线CO2/H2O分析仪,分别测定参比和分析气路中CO2和H2O气浓度,分析仪可用于开放式或密闭式测定。CO2测定范围0-10000mol mol-1 CO2精度: 300mol mol-1时为0.2mol mol-11750mol mol-1时为0.5mol mol-110000mol mol-1时为3mol mol-1CO2控制范围:0-2000mol mol-1H2O测定范围:0-75mb H2O精度:0mb时为0.015mb 10mb时为0.020mb50mb时为0.030mbH2O控制范围:0-露点压力范围:65-115kPa稳定性: 定期自动调零和差分平衡校准功能可以有效消除因环境及其他原因造成仪器零点漂移空气采样:内置取样泵决定参比气和分析气的流量, 50-100 cc min-1内设定。叶室供气:叶室供气在0-500cc min-1范围内设定辅助端口:外接设备接口数据更新速率:1.6s数据输出: USB数据传输;两个USB外接设备接口(如鼠标等)数据存储:无限存储仪器显示:10.2” VGA半透射式的LCD屏液晶显示器,强光下清晰可见用户输入:27键电源:内置可充电锂电池,连续使用8小时操作环境:0-50外壳:超轻耐磨人体舒适学设计的聚亚安酯铝型材尺寸:27.5 cm (W) x 14.5 cm (D) x 24 cm (H)重量: 4Kg叶室主要技术指标:叶室材质: 铝合金叶室手柄;叶室窗口(安装红外过滤玻璃);不锈钢泵轮LCD显示:叶室手柄上2行16字符LCD显示器,实时显示测定数据按键:两个键分别用来记录和调节LCD亮度窗口尺寸: 18mm直径/面积2.5cm2 2518mm/面积4.5 cm2 257mm/面积1.75cm2自动控温:极佳的叶室温度控制,可以在大气温度上下10内控制控温范围:5-45气温探头:热敏电阻,测定精度0.5叶温探头:辐射探头非接触测定,测定精度0.5内置PAR探头:测定范围0-3000mol m-2 s-1,积分400-700nm的光,分辨率:1mol m-2 s-1外置PAR探头:测定范围0-3000mol m-2 s-1,积分400-700nm的光,分辨率:mol m-2 s-1尺寸:32 cm (L) x 4 cm (W)重量:0.750kgCIRAS-3光源:超强红蓝绿白光源红光波峰625nm+/-5nm,半峰宽15nm绿光波峰528nm+/-8nm 半峰宽40nm蓝光波峰475nm+/-10nm 半峰宽28nm白光波长425-650nm用户可以根据需要自己按比例调整光源自动控光范围:0-2500 mol m-2 s-1第五页CIRAS-3 便携式光合荧光测定系统CIRAS-3是美国PP Systems公司和全球最专业的荧光仪生产商英国 Hansatech 公司联合研发的最新光合荧光测定系统,能够同时测定不同环境条件(CO2浓度,温度,湿度等)下的光合和荧光数据,代表了当今国际叶片气体交换及叶绿素荧光整合系统的最高水平。CIRAS-3光合荧光仪具有CIRAS-3光合仪的全部功能,额外增加了功能强大的荧光模块和荧光光源部件。光合荧光数据同时测定的优势:1 荧光数据是光合数据的有力补充,能更深入解释光合变化的原因2 光合荧光在相同光质下测定,数据更稳定,准确,重复性更好3 光合荧光数据同时测定能够研究电子传递和电子传递的能量分配CFM3 荧光部件测量参数:暗适应下参数:Fo, Fm, Fv, Fv/Fm光适应下参数:Fs, Fm, Fo,Fv, Fv/Fm,PS, ETR荧光淬灭参数:qP, qNP, NPQ 反应光化学效率参数:Fv/Fm, Fv/Fm, PSCIRAS-3 荧光部分技术指标:调制光束:625nm+/-5nm (红)饱和光: 0-10000 mol m-2 s-1远红光: 2750nm LED检测器: 带有700nm滤光片的PIN光电二极管 检测模式: 快速峰值追踪 叶面积:1.75/2.5/4.5cm2P 6-7页内容参考文献Uehlein N, Otto B, Hanson DT, etc. Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability. Plant Cell, 2008, 20: 648657 CIRAS-2Galvez-Valdivieso G, Fryer MJ, Lawson T, etc. The High Light Response in Arabidopsis Involves ABA Signaling between Vascular and Bundle Sheath Cells. Plant Cell, 2009, 21: 2143-2162 CIRAS-2Eastmond PJ, Quettier AL, Kroon JTM, etc. PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 Regulate Phospholipid Synthesis at the Endoplasmic Reticulum in Arabidopsis. Plant Cell, 2010, 22: 2796-2811 Bauerle WL, Oren R, Way DA, etc. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. PNAS, 2012, 109(22):8612-8617 CIRAS-2Ravet K, Touraine B, Boucherez J, etc. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. The Plant Journal, 2009, 57: 400-412 Jiang CD, Wang xin, Gao HY. Systemic Regulation of Leaf Anatomical Structure, Photosynthetic Performance, and High-Light Tolerance in Sorghum. Plant Physiology,2011, 155: 1416-1424Pantin F, Simonneau T, Rolland G,etc. Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics. Plant Physiology, 2011 156:803-815 CIRAS-2Fu QS, Cheng LL, Guo YD, etc. Phloem Loading Strategies and Water Relations in Trees and Herbaceous Plants. Plant Physiology, 2011 157: 1518-1527 CIRAS-1Trotta A, Wrzaczek M, Scharte J, etc. Regulatory Subunit B of Protein Phosphatase 2A Prevents Unnecessary Defense Reactions under Low Light in Arabidopsis. Plant Physiology, 2011, 156:1464-1480. CIRAS-1Subramanyam K, Arun M, Mariashibu TS, etc. Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections. Planta, 2012, 236(6): 1909-1925 CIRAS-1Wang HC, Ma FF, Cheng LL, etc. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of Honeycrisp apple (Malus domestica Borkh) with excessive accumulation of carbohydrates. Planta, 2010, 232(2):511-522Massot C, Stevens R, Genard M, etc. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta, 2012, 235(1):153-163 Coopman RE,Briceo VF, Corcuera LJ, etc. Tree size and light availability increase photochemical instead ofnon-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. Tree Physiology, 2011, 31(10): 1128-1141 CIRAS-2Diego ND, Prez-Alfocea F, Cantero E, etc. Physiological response to drought in radiata pine: phytohormone implication at leaf level. Tree Physiology, 2012, 32(4): 435-499 CIRAS-2Papers R, Bresson CC, Vitasse Y, etc. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 2011, 31(11):1164-1174 CIRAS-2Aasamaa K, Sbe A. Responses of stomatal conductance to simultaneous changes intwo environmental factors Tree Physiology, 2011, 31(8): 855-864 CIRAS-1Liu TW, Wu FH, Wang WH, etc. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 2011, 31(4):402-413 CIRAS-2Larchevque M, Maurel M, Desrochers A, etc. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species?. Tree Physiology, 2011, 31(3): 240-249 CIRAS-2:Arve LE, Terfa MT, Gislerod HR, etc. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant, Cell&Environment, 2012 CIRASWuyts N, Massonnet C, Dauzat M, etc. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach. Plant, Cell&Environment, 2012, 35(9): 1631-1646 CIRASPrieto JA, Louarn G, Pena JP, etc. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.). Plant, Cell&Environment, 2012, 35(7):1313-1328 CIRASJavier J, Flexas J, Galmes J, etc. Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant, Cell&Environment, 2012, 35(12): 2121-2129 CIRASVickers CE, Possell M, Laothawornkitkul J, etc. Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant, Cell&Environment, 2011, 34(6): 1043-1053 CIRASDriever SM, Baker NR. The waterwater cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant, Cell&Environment, 2011, 34(5): 837-846 CIRASWargent JJ, Elfadly EM, Moore JP, etc. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell&Environment, 2011, 34(8): 1401-1413 CIRASPavlovic A, Ludmila L, Santrucek J. Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria. Plant, Cell&Environment, 2011, 34(11): 1865-1873 CIRASVasseur F, Pantin F, Vile D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant, Cell&Environment, 2011, 34(9): 1563-1576 CIRASEinhorn TC, Turner J, Laraway D. Effect of Reflective Fabric on Yield of Mature dAnjou Pear Trees. Hortscience, 2012, 47:1580-1585 CIRAS-2Astacio MG,van Iersel MW. Concentrated Exogenous Abscisic Acid Drenches Reduce Root Hydraulic Conductance and Cause Wilting in Tomato. Hortscience, 2012, 46: 1640-1645 CIRAS-2Astacio MG,van Iersel MW. Determining the Effects of Abscisic Acid Drenches on Evapotranspiration and Leaf Gas Exchange of Tomato. Hortscience, 2012, 46: 1512-1517 CIRAS-2Niu G, Rodriguez D, Gu MM. Fertilization, and Irrigation: Response of Sophora secundiflora to Nitrogen Form and Rate. Hortscience, 2011, 46: 1303-1307 CIRAS-2Ding M, Bie B, Jiang W, Hunag DF. Physiological Advantages of Grafted Watermelon (Citrullus lanatus) Seedlings under Low-temperature Storage in Darkness. Hortscience, 2011, 46: 993-996 CIRAS-2Miralles-Crespo J, Martnez-Lpez JA, Franco-Leemhuis J, etc. Determining Freezing Injury from Changes in Chlorophyll Fluorescence in Potted Oleander Plants. Hortscience, 2011, 46: 895-900 CIRAS-2Pennisi SV, van Iersel MW. Quantification of Carbon Assimilation of Plants in Simulated and In Situ Interiorscapes. Hortscience, 2012, 47: 468-476 CIRAS-2Salvatori, E, Fusaro L, Mereu S, etc. Different O3 response of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.): The key role of growth stage, stomatal conductance, and PSI activity. Environmental and Experimental Botany, 2013, 87: 79-91 CIRAS-2Signarbieux C, Feller U. Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environmental and Experimental Botany, 2011, 71(2): 192-197 CIRAS-2Orsini F, Alnayef M, Bona S, etc. Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany, 2012, 81: 1-10Jensen AM, Gardiner ES, Vaughn KC. High-light acclimation in Quercus robur L. seedlings upon over-topping a shaded environment. Environmental and Experimental Botany, 2012, 78: 25-32Pellegrini E, Carucci MG, Campanella A, etc. Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environmental and Experimental Botany, 2011, 73: 94-101Mereu S, Gerosa G, Marzuoli R, etc. Gas exchange and JIP-test parameters of two Mediterranean maquis species are affected by sea spray and ozone interaction. Environmental and Experimental Botany, 2011, 73: 80-88 Aasamaa K, Sber A. Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environmental and Experimental Botany, 2011, 71: 72-78Pellegrini E, Francini A, Lorenzini G, etc. PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environmental and Experimental Botany, 2011, 70: 217-226Alameda D, Villar R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany, 2012, 79: 49-57Jensen AM, Lf M, Gardiner ES. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L. seedlings. Environmental and Experimental Botany, 2011, 71(3):367-375Strauss AJ, van Heerden PDR. Effects on both the roots and shoots of soybean during dark chilling determine the nature and extent of photosynthesis inhibition. Environmental and Experimental Botany, 2011, 74: 261-271Bunce JA, Nasyrov M. A new method of applying a controlled soil water stress, and its effect on the growth of cotton and soybean seedlings at ambient and elevated carbon dioxide. Environmental and Experimental Botany, 2012, 77: 165-169Lobos GA, Retamales JB, Hancock JF, etc. Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. Elliott grown under photo-selective nets. Environmental and Experimental Botany, 2012, 75: 142-149Azzarello E, Pandolfi C, Giordano C, etc. Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environmental and Experimental Botany, 2012, 81: 11-17Jiang W, Ding M, Huang DF, etc. Exogenous glucose preserves the quality of watermelon (Citrullus lanatus) plug seedlings for low-temperature storage. Scientia Horticulturae, 2012, 148: 23-29 FMS-2 CIRAS-2张子山,李耕,高辉远等. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化, 作物学报, 2013,39(1):93-100霍捷, 王俊玲, 高志奎.亚硫酸氢钠对白菜叶片硝酸盐还原及光合能力的影响. 园艺学报, 2012, 39(4): 669-676邱念伟, 周峰, 王兴安. 5种松属树种光合功能及叶绿素快相荧光动力学特征比较. 应用生态学报, 2012, 23(5): 1181-1187罗蕊, 张杰, 姬谦龙. 梨果实源营养液的制备及其对梨树叶片光合特性和果实品质的影响, 中国农业科学, 2012, 45(16): 3337-3345李涛, 刘玉军, 姜闯道. 栽培密度对薄荷生长策略和光合特性的影响. 植物生理学报, 2012, 48(9): 895-900第八-第九页文字内容TPS-2便携式光合作用测定系统TPS-2 Portable Photosynthesis System TPS-2便携式光合作用测定系统是测定植物叶片和组织光合速率、呼吸速率、蒸腾速率和气孔导度等参数的专用仪器。TPS-2光合仪的重要特性: 配有即插式LED可调光源最大光强2000mol m-2 s-1 (测定完整光强光合响应曲线) 自动调零查分平衡校正专利技术 全自动校准,保证数据准确,简化操作步骤 在大气CO2和 H2O浓度下进行CO2和H2O浓度的控制 主机本身可以作为高精度CO2分析仪 超便携性;重量轻,携带方便,操作简单,性能稳定。整机只有5.2Kg应用领域:主要应用于农学,园艺,植物生理,植物生态,植物栽培学,植物病理学,林学等相关领域大图光合仪测定出的重要参数:参数中文名称英文名称单位A(Pn)净光合速率Assimilation Ratemol m-2 s-1E蒸腾速率Transportation Rate m mol m-2 s-1G气孔导度Stomatal Conductance m mol m-2 s-1Ci细胞间隙CO2浓度Internal CO2 Concentration ppm或mol mol-1环境参数C大气CO2浓度Air CO2 Concentrationppm或mol mol-1H大气湿度Air HumiditymbT大气温度Air TemperatureQ(PAR)光合有效辐射PARmol m-2 s-1计算参数CE羧化效率Carboxylation Efficiency%AQY表观量子效率Apparent Quantum Yield%Rp光呼吸Rate of Photorespiratonmol m-2 s-1Ic光补偿点Light Compensation Pointmol m-2 s-1CO2补偿点CO2 Compensation Pointppm或mol mol-1 响应曲线图技术指标(用表格)分析方式:高精度非色散型红外线CO2分析仪,开放式气路,微处理器控制线性化。测定范围:CO2:02,000 mol mol-1(最佳范围) 09,999 mol mol-1(最大范围) H2O:075 mb 精 度:CO2:300 ppm时 1% H2O:100% RH时 1% 稳 定 性:CO2分析仪具有独一无二的自动调零和差分校正专利技术控制范围:CO2: 0 参比CO2, 6个控制水平;H2O: 0 露点,4个控制水平响应时间:电信号响应时间: 0.5 秒;显示/输出响应时间: 1.5 秒; 气体响应时间: 5 秒;取样速率:100ml min-1记录选项:手动记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全员安全教育培训体会课件
- 二学士法学就业前景
- 就业选择与职业发展规划
- 服务监察岗位面试技巧
- 用户研究员职业前景分析
- 饮料生产安全培训讲解
- Java人工智能主流框架解析
- 光缆敷设施工安全培训课件
- 教育心理学研究生就业前景
- 气象学期末考试题库及答案
- 2026年农业科技领域人才选拔与专业技能考核要点解析
- 2025年度科室护士长工作总结与2026年工作计划
- 酒类进货合同范本
- 江苏省南京市2024-2025学年高一上学期期末学情调研测试物理试卷
- 2026年教师资格之中学综合素质考试题库500道及答案【真题汇编】
- TCEC5023-2020电力建设工程起重施工技术规范报批稿1
- 2025秋国开《人力资源管理理论与实务》形考任务1234参考答案
- 2026年5G网络升级培训课件
- 2025安徽宣城宁国市面向社会招聘社区工作者25人(公共基础知识)综合能力测试题附答案解析
- 农产品营销策略研究国内外文献综述
- 广东省广州市越秀区2024-2025学年上学期期末考试九年级数学试题
评论
0/150
提交评论