




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MATLAB插值与拟合1曲线拟合1. 1. 多项式曲线拟合函数:polyfit( )调用格式:p=polyfit(x,y,n)p,s= polyfit(x,y,n)说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval)例:由离散数据x..8.91y.3.5.2拟合出多项式。程序:x=0:.1:1;y=.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2n=3;p=polyfit(x,y,n)xi=linspace(0,1,100);z=polyval(p,xi); %多项式求值plot(x,y,o,xi,z,k:,x,y,b)legend(原始数据,3阶曲线)结果:p = 16.7832 -25.7459 10.9802 -0.0035多项式为:16.7832x3-25.7459x2+10.9802x-0.0035曲线拟合图形:也可由函数给出数据。例3:x=1:20,y=x+3*sin(x)程序:x=1:20;y=x+3*sin(x);p=polyfit(x,y,6)xi=1inspace(1,20,100);z=poyval(p,xi); %多项式求值函数plot(x,y,o,xi,z,k:,x,y,b)legend(原始数据,6阶曲线)结果:p =0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304再用10阶多项式拟合程序:x=1:20;y=x+3*sin(x);p=polyfit(x,y,10)xi=linspace(1,20,100);z=polyval(p,xi);plot(x,y,o,xi,z,k:,x,y,b)legend(原始数据,10阶多项式)结果:p = Columns 1 through 7 0.0000 -0.0000 0.0004 -0.0114 0.1814 -1.8065 11.2360 Columns 8 through 11 -42.0861 88.5907 -92.8155 40.2671可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。1、2 多项式曲线求值函数:polyval( )调用格式:y=polyval(p,x)说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。1、3 向自定义函数拟合对于给定的数据,根据经验拟合为带有待定常数的自定义函数。所用函数:nlinfit( )调用格式:beta,r,J=nlinfit(X,y,fun,betao)说明:beta返回函数fun中的待定常数;r表示残差;J表示雅可比矩阵。X,y为数据;fun自定义函数;beta0待定常数初值。例:在化工生产中获得的氯气的级分y随生产时间x下降,假定在x8时,y与x之间有如下形式的非线性模型:现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。xyxyxy80.49160.43280.4180.49180.46280.40100.48180.45300.40100.47200.42300.40100.48200.42300.38100.47200.43320.41120.46200.41320.40120.46220.41340.40120.45220.40360.41120.43240.42360.36140.45240.40380.40140.43240.40380.40140.43260.41400.36160.44260.40420.39160.43260.41首先定义非线性函数的m文件:model.mfunction yy=model(beta0,x) a=beta0(1); b=beta0(2); yy=a+(0.49-a)*exp(-b*(x-8);程序:x=8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00 14.00 14.00. 16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00 24.00. 24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00 32.00. 34.00 36.00 36.00 38.00 38.00 40.00 42.00; y=0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43 0.44 0.43. 0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41. 0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39; beta0=0.30 0.02;betafit = nlinfit(x,y,model,beta0)结果:betafit = 0.38960.1011即:a=0.3896 ,b=0.1011 拟合函数为:1.4曲线拟合工具箱curve fitting tollbox曲线拟合工具箱 book.iLoveM MATLAB有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A0,B0 。 1、在命令行输入数据: x=110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475; y=5 10 15 20 25 30 35 40 45 50; 2、启动曲线拟合工具箱 cftool 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; book.iLoveM (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: Custom Equations:用户自定义的函数类型 Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-(x-b1)/c1)2) Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving Polynomial:多形式逼近,有9种类型,linear 、quadratic 、cubic 、4-9th degree Power:幂逼近,有2种类型,a*xb 、a*xb + c Rational:有理数逼近,分子、分母共有的类型是linear 、quadratic 、cubic 、4-5th degree ;此外,分子还包括constant型 Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1) Weibull:只有一种,a*b*x(b-1)*exp(-a*xb) 选择好所需的拟合曲线类型及其子类型,并进行相关设置: 如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数; 如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。 在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。 (5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例: general model: f(x) = a*x*x+b*x Coefficients (with 95% confidence bounds): a = 0.009194 (0.009019, 0.00937) b = 1.78e-011 (fixed at bound) Goodness of fit: SSE: 6.146 R-square: 0.997 Adjusted R-square: 0.997 RMSE: 0.8263 同时,也会在工具箱窗口中显示拟合曲线。 这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“Fitting”窗口点击“New fit”按钮,按照步骤(4)(5)进行一次新的拟合。不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好 2 插值问题在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。实例:海底探测问题某公司用声纳对海底进行测试,在55海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。2、1一元插值一元插值是对一元数据点(xi,yi)进行插值。 线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。调用格式:yi=interp1(x,y,xi,linear) %线性插值zi=interp1(x,y,xi,spline) %三次样条插值wi=interp1(x,y,xi,cubic) %三次多项式插值说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。例:已知数据:x..8.91y.3.5.2求当xi=0.25时的yi的值。程序:x=0:.1:1;y=.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2;yi0=interp1(x,y,0.025,linear)xi=0:.02:1;yi=interp1(x,y,xi,linear);zi=interp1(x,y,xi,spline);wi=interp1(x,y,xi,cubic);plot(x,y,o,xi,yi,r+,xi,zi,g*,xi,wi,k.-)legend(原始点,线性点,三次样条,三次多项式)结果:yi0 = 0.3500要得到给定的几个点的对应函数值,可用:xi = 0.2500 0.3500 0.4500yi=interp1(x,y,xi,spline)结果:yi =1.2088 1.5802 1.3454 2、2二元插值二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见上面函数求出插值点数据(xi,yi,zi)。一、 一、单调节点插值函数,即x,y向量是单调的。调用格式1:zi=interp2(x,y,z,xi,yi,linear) liner 是双线性插值 (缺省)调用格式2:zi=interp2(x,y,z,xi,yi,nearest) nearest 是最近邻域插值 调用格式3:zi=interp2(x,y,z,xi,yi,spline) spline是三次样条插值说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i) ,z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。例2:已知某处山区地形选点测量坐标数据为:x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6海拔高度数据为:z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87其地貌图为:对数据插值加密形成地貌图。程序:x=0:.5:5;y=0:.5:6;z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古鄂尔多斯市东胜区招聘社区工作者100人笔试模拟试题及答案解析
- 2025安徽马鞍山市市场监管综合行政执法支队招聘编外聘用人员1人笔试备考试题及答案解析
- 2025广东广州市海珠区滨江街道市容环境卫生监督检查所招聘环卫工人2人笔试备考试题及答案解析
- 招3人!西宁市妇幼保健计划生育服务中心公开招聘志愿者笔试备考题库及答案解析
- 2025年整形美容外科手术技术考核模拟测试答案及解析
- 2025山东大学澳国立联合理学院非事业编制岗位招聘2人笔试模拟试题及答案解析
- 2025年放射科头颅CTMRI卒中影像诊断模拟考卷答案及解析
- 2026中国民生银行天津分行全球校园招聘笔试参考题库附答案解析
- 2025甘肃省“带编入企”引进高层次人才257人(第二批)笔试备考题库及答案解析
- 2025年影像科医学影像解读技巧考核模拟考试卷答案及解析
- 《研究生入学教育》课件
- 汽车行业中的环境保护与可持续发展
- 打起手鼓唱起歌混声合唱简谱
- 空调安装免责协议
- QGW 201175-2019-金风陆上风力发电机组 塔架通用防腐技术规范
- 老友记第一季字幕
- 输电线路风偏计算基本方法
- 骨科概论课件
- 第5章光电成像系统
- GB/T 9117-2010带颈承插焊钢制管法兰
- GB/T 5455-2014纺织品燃烧性能垂直方向损毁长度、阴燃和续燃时间的测定
评论
0/150
提交评论