BOT方式建设成都市水六厂B厂的介绍和启迪.doc_第1页
BOT方式建设成都市水六厂B厂的介绍和启迪.doc_第2页
BOT方式建设成都市水六厂B厂的介绍和启迪.doc_第3页
BOT方式建设成都市水六厂B厂的介绍和启迪.doc_第4页
BOT方式建设成都市水六厂B厂的介绍和启迪.doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BOT方式建设成都市水六厂B厂的介绍和启迪 - 市政给排水论文简介: 本文介绍了成都市水六厂B厂BOT项目净水厂、输水管道建设的概况,笔者参与该工程过程中的一些体会,为其它类同项目的策划,提出了一些建议。 关键字:BOT 供水工程 净水厂 输水管道 1.概述成都市自来水六厂是目前国内最大的重力流供水厂,利用成都平原的自然坡降及都江堰水系的特征,从上游不到2km的徐堰河、柏条河重力引水至水厂,常年引用徐堰河水,徐堰河岁修期间转用柏条河水,河水经水厂净化处理后,利用自然高差,向城市管网重力输水。水六厂取水设施分佈图,如图1。它近期规划为A、B、C三个水厂,A厂是老厂,于19901996年分三期建成,均匀供水达60万m3/d;B厂是按BOT方式新建的均匀供水40万m3/d的新厂;C厂系规划建设中的另一新厂,规模类同B厂;三个厂既独立运营、又相互毗邻,将形成一个达140万m3/d的重力流均匀供水基地。水六厂输水管道分佈图,如图2。 B厂于1997年1月经国家计委批准立项的全国第一个城市供水设施BOT试点项目,经一年多的国际公开招标,中标方是法国通用水务集团-日本丸红株式会社的投标联合体。并于1999年8月11日由成都市政府与成都通用水务-丸红供水有限公司(项目公司)正式签署了特许权协议,经两年半的紧张施工,于2002年2月11日按期完工,投入商业运营,一年多来运营的总体效果是好的,为我国今后按BOT方式建设供水设施积累了可贵的经验。B厂BOT项目包括4个子项目:80万m3/d的取水工程(两座取水口、连通渠、引水暗渠);40万m3/d的净水厂;140万m3/d净水厂的排水总渠;DN2400mm27km的输水管道。其中引水暗渠的一半、排水总渠、输水管道为BT(建设、移交)项目,于2003年5月26日正式移交给了成都市政府,由成都市自来水总公司接管;其余部分为BOT项目,项目公司将运营管理十五年半后移交给成都市政府。工程总投资1.065亿美元,项目公司在B厂运营管理期间,每天向城市管网输送40万m3的自来水,成都市自来水总公司按月供水量向项目公司以人民币支付运营水费,并向都江堰管理部门缴纳水资源费。运营水价包括固定价格和浮动价格两部分组成,浮动价格按汇率系数变化而调整。在购水协议上,对每个运营年的运营水价作了明确描述,第一年为0.96元/m3,最后一年为1.56元/m3,在十五年半的运营期间将向项目公司累计支付的水费约达31.27亿人民币。2. 净水厂取水及净水厂的工艺设计及设备安装工程由法国OTV公司分包的,考虑到原水水质的特征:枯水期低温、低浊;洪水期高浊、泥砂含量高、瞬时变化大;原水易受突发性污染。故净水工艺是按二次沉淀、过滤消毒的常规流程构思的,其工艺流程方块图,如图3。2.1取水部分取水部分由取水口、连通渠、连接井及引水暗渠组成。2.1.1取水口取水口由拦河闸、进水格栅、冲砂设施及进水控制闸组成。徐堰河取水口利用了A厂的相关设施,仅新建进水控制闸;柏条河取水口亦利用了A厂的相关设施,新建10m长进水格栅及进水控制闸。2.1.2连通渠、连接井连通渠、连接井的功能是为了连接两个取水口,将原水转输入引水暗渠。在每条连通渠出口处设有叠梁闸,在连接井下游方向的格栅室内装有四台自动除渣机,并设有人工、电动控制闸板。为了防范原水突发性污染问题,在连接井内设置了酚、氨氮、锰及水位、pH、浊度、电导率等在线测定仪表,以上测定数据同时传递到水六厂B厂、A厂中控室。2.1.3引水暗渠引水暗渠为现浇钢筋砼结构,双孔方涵,每孔尺寸为长1830.0m、宽3.0m、高2.0m,B、C两厂各用一孔,出口处设有叠梁闸,将原水输入B厂厂区内的分配井。2.2厂区部分2.2.1分配井在分配井内设置了电动、手动调节闸板,将原水分配至B、C两厂。由于分配井没有溢流设施,在试运行中,调控DN1800mm气动控流阀时产生水锤,分配井出现顶部溢流故障。为此,分配井是修改得较多的构筑物之一,调节闸板改电动、抬高井壁高度、增设旋转爬梯等。2.2.2配水井配水井的功能是将原水经溢流堰及闸板切换,均匀分配至两座预沉池或通过超越管至两座混合井。井内水停留时间为3.0min,井内设六条溢流堰,堰总长达60m,从而减少水头损失。按原水水质需要,可在井内投加PAM、粉末活性炭及前加氯。在分配井与配水井间设有DN2400mm超声波流量计及DN1800mm气动控制阀,通过流量信号对阀门自控或远控,调节进水量。2.2.3预沉池当原水浊度大于1000NTU时,原水流入两座幅流式预沉池,其内径为36m,周边水深为2.96m,池中水深为4.19m,池底中心设内径5.0m、深1.2m的集泥斗,通过中心传动桁架式刮泥机,将泥刮至斗内,由排泥管、排砂泵送至排水渠道。设计排泥浓度为5%,预沉池设计最大负荷为10m3/m2.h。利用投加PAM去除高浊,停留时间为20min,但近些年原水高浊情况不多,预沉池基本没有使用。2.2.4混合池当原水浊度小于1000NTU时,通过超越管直接进入混凝沉淀系统,首先在两座机械混合池停留1.24min,混合池有效容积180m3,安设一台变频悬臂式混合搅拌机,混合搅拌流量为设计流量的3倍。PAC、PAM及滤池反冲洗回用水均投入该池内。2.2.5絮凝池两座混合池分别连通5格机械絮疑池,共10格,水经混合池后,均匀分配到每一格絮凝池的进水渠道,水从进水渠底部长条形孔进入絮凝池,经搅拌后,水从絮凝池上部进入沉淀池底部。絮凝池(图4)每格处理水量在17401980m3/h间,一格池的平面尺寸为8.748.70m,有效水深为7.63m,有效容积为580m3,一格池内只设立了一挡变频慢速搅拌机,搅拌叶轮直径为3.8m,转速为1.36.5转/min,叶轮外缘线速度为1.27m/s,配套电机功率为1.10kw,搅拌机具有回流十余倍设计流量的性能,水在池内达到三维旋转翻滚流动,GT值控制在104105之间,絮凝时间达20min,此机械絮凝池的设计与国内流行的设计不一样,它结构简单、池内基本上不积泥、形成的絮花好。但需要说明的是混合池中除投加PAC外,还需同时投加PAM,否则影响絮凝效果。2.2.6斜管沉淀池OTV设计的(MULTIFLO)斜管沉淀池,亦分10个格,每格池沉淀区面积为108.66m2,液面负荷在1618.2m3/m2.h之间,斜管高1.21m(斜长1.4m、倾角60),棱形(39.535.5mm)斜管采用乙丙共聚板材模压、热焊组合成型,清水区保护高0.686m,底部配水区高2.1m,采用小漏斗、静压差排泥,小漏斗高3.57m。每格沉淀区有9个排泥斗,10格共90个斗。每个斗设一根排泥管至排水管廊,9根管为一组,每组设排泥总管,排泥总管上设有移动式泵抽放空措施。为了减少排泥管埋深,采用4.18m静压差排泥,每根排泥管上安了一个气动橡胶快速排泥阀,定时启动排泥,小斗增加浓缩时间、减少排泥水量,效果是满意的(图5)。排水管廊布置在沉淀池出水渠的下方,总长约93m,在管廊里排列90个气动橡胶快速排泥阀,有利于集中管理。当水中溶解氧较多时,池内会出现气浮效应,部分浮渣上浮,故在进水侧设置横向排渣槽,用阀门控制排渣。 尽管沉淀池液面负荷比国内设计大了1.7倍,一年运营效果而言,PAC原液投加量为1025mg/l、PAM投加量为0.050.15mg/l时,沉淀池出水浊度在23NTU之间,滤后水浊度在0.050.2NTU之间。沉淀池采用的玻璃钢集水槽存在静电吸附絮花的问题,斜管上端面,积絮花的现象较明显,经常需专人用高压水冲洗。2.2.7快速F型滤池快速F型滤池系OTV专利,滤池共8格,每格面积为122m2,池深4.86m,原设计滤层厚度为2m,过滤周期2024h,滤速达17.319.8m/h,采用长柄滤头,滤帽缝隙总面积占滤池过滤面积的1.36%,气水反冲洗过程由冲洗周期及滤层水头损失自动控制,气冲强度50m3/m2/h,气水同时反冲时水冲洗强度12m3/m2/h,水清洗阶段时反冲洗强度为30m3/m2/h,滤料膨胀度为10%。滤池反冲洗的前期高浓度浑浊水直接排入排水渠道,反冲洗后期水回收后泵至混合井,回用水量的比例由化验室试验确定,以反冲洗的时间进行控制。在初设、施工图中滤料粒径未定,但在安装期间确定滤料粒径d10为1.35mm,K601.5。由于冲洗强度为de1.31成正比,粒径加大了,反冲强度需提高,为此增加了一台鼓风机,同时滤层厚度减为1.5m,冲洗水泵未变,水冲强度未变,只是在滤池反冲洗过程中补充了一次水反冲。并且滤池单侧进水孔处,为了避免冲刷滤层表面,增设了穿孔消能板。尽管滤池运行尚可,但滤池优化运行的研究、技改仍在探讨,也就是说,在水厂试运行过程中修改原设计较多的净化工艺是滤池。2.2.8清水池水六厂为均匀供水水厂,清水池有效容积为5.2%,分由4组,每组可独立清洗,每组池进、出口设有叠梁闸及手动闸板闸,清水池出口有细格栅装置,溢流堰出口有水封设施。遗憾的是整个清水池没设爬梯;清水池出水管利用90弯管虹吸出水,为了减少流量计管顶的积气,用水射器人工抽排弯管顶部的空气。2.2.9药剂楼药剂楼内设有PAC、PAM、粉末活性炭、液氯的贮存及投加系统。(1)碱式氯化铝(PAC)原液投加系统PAC原液贮存在四个直径为2.9m、高为7.6m、容积为50m3的聚乙烯罐内,用六台隔膜式计量泵Q=350L/h、P=0.525Mpa(四用二备),将原液投入混合池中,并在投加点增加了稀释原液的供水装置。(2)聚丙烯酰胺(PAM)投加系统固体PAM配制设有进料斗、PAM的贮罐(45m32)、45m3配液池(两座)及搅拌机组成。投加采用偏心螺杆泵,原水高浊度时采用三台Q=515m3/h、H=50m(二用一备)投加至配水井;作为助凝剂使用时采用六台Q=0.1952.1 m3/h、H=50m(四用二备),投加至混合井。PAM稀释的水由滤池管廊专用泵供给的不含氯的滤后水。根据高效絮凝沉淀的设计构思,需要长期投加助凝剂,而国产PAM的单体含量不稳定,故指定用法国进口的PAM,且需我国卫生部签发的许可证。(3)粉末活性炭投加系统设置了粉末活性炭投加系统,解决突发性酚的污染问题。投加粉末活性炭有V=1000L进料斗、贮罐(45m32)、50m3配液池(两座)及搅拌机组成。用偏心螺杆泵泵入配水井中,为了消除进料点的粉尘,增设一套粉尘吸收装置,由水吸收后排出。(4)液氯投加系统液氯投加系统分前加氯、后加氯两部分。加氯间设有200kg/h蒸发器二台,前加氯机V030 60kg/h一台,后加氯机V2100 200kg/h二台。水射器设在药剂楼内,压力水由厂自用水系统供给,设有三探头漏氯报警系统及漏氯回收中和系统。前加氯按流量采取比例投加,投加点设在配水井及斜管沉淀池出口,用折点加氯法,解决氨氮、BOD等超标带来的有机污染问题;后加氯采取复合环自动投加,投加点设在滤池出水管上。氯库净空高仅4.2m,氯瓶起吊不便。2.2.10出水流量及水质检测B厂出水流量及出水水质的检测,对BOT项目而言是极为重要的。在清水池出水管上装有两套DN2400mm超声波流量计,在该两套流量计之间留有3.2m宽在线比对检定的位置,以便安装比对检定的流量计,流量计使用前经有资格的检验机构检验合格,流量计井室设有两把锁,实行共管。在清水池出口装有两套浊度、余氯、pH在线监测仪和记录仪。上述水质参数及流量、清水池水位信息,以专线传至A厂中控室。由于水厂进水、出水均装设了流量计,自用水率的核算比较方便,由于在沉淀池排泥及滤池反冲洗的以上措施,目前水厂厂区自用水率3.5%,这表明B厂是一座节水型的净水厂。2.2.11控制系统B厂的运行控制由SCADA系统、仪器仪表系统、工业监视系统组成。运行控制的设计原则是分散控制与中控室管理、控制相结合。整个水厂在取水口、预沉池、沉淀池、滤池、药剂楼、清水池等处总设有15套控制系统,可以在调试、保养及检修时就地进行参数修改与控制,絮凝剂、助凝剂、消毒剂等均按设定值自动投加;中控室设有两套SCADA工作站,实施对水厂工艺监视、数据采集、参数修改及远控或自控。3.输水管道根据特许权协议的承诺,项目公司在B厂投产前应敷设完DN2400mm27km输水管道,与三环路城市管网连通,承包商为法国SADE公司,管道设计由成都市供水工程设计院分包,管道施工由武汉市供水工程公司分包。城市管网的配套建设由成都市政府同期进行,确保B厂投产后,每天40万m3自来水能均匀输入管网。3.1管道走向原考虑的输水管道的走向是由水六厂B厂磨盘山高位水库三环路;但因当时许多问题尚未确定,故将输水管道走向改为由水六厂B厂三环路沿三环路向磨盘山方向伸延敷设,其中水六厂B厂至三环路为20km,三环路外侧绿化带沿三环路敷设7km(图6)。 A段平、纵断面图,如图7。B段平、纵断面图,如图8。3.2管道口径输水管道口径的确定,不完全是为了B厂40万m3/d的输水需要,综合考虑到原A厂三条预应力输水管道存在的隐患,以及城市供水范围扩大的需要。 3.3管道材质输水管道原考虑采用钢筒预应力砼管,但管厂建设迟迟未能上马,而B厂建设对工期控制很严,故在标书上定为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论