线性代数1.3-2.doc_第1页
线性代数1.3-2.doc_第2页
线性代数1.3-2.doc_第3页
线性代数1.3-2.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

授课日期授课班级G10205授课课时2授课形式授课章节名 称第一章 行列式1.3 克拉默法则使用教具教学目的1 理解克拉默法则。2 会用克拉默法则讨论齐次线性方程组的解。教学重点重点:1. 克拉默法则教学难点难点:行列式的按行(列)展开更新、补充、删节内 容选讲:一些常用的行列式课外作业P29 1教学后记板 书 设 计课 堂 教 学 安 排主要教学内容及步骤备 注本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):基本内容:1. 克莱姆法则含有个未知元的个线性方程的方程组当全为零时,称为齐次线性方程组;否则,称为非齐次线性方程组。(1) 如果方程组的系数行列式,那么它有唯一解:,其中是把中第列元素用方程组的右端的自由项替代后所得到的阶行列式。(2) 如果线性方程组无解或有两个不同的解,那么它的系数行列式。(3) 如果齐次线性方程组的系数行列式,那么它只有零解;如果齐次线性方程组有非零解,那么它的系数行列式必定等于零。用克莱姆法则解线性方程组的两个条件:(1) 方程个数等于未知元个数;(2) 系数行列式不等于零。克莱姆法则的意义主要在于建立了线性方程组的解和已知的系数以及常数项之间的关系.它主要适用于理论推导.2. 一些常用的行列式(1) 上、下三角形行列式等于主对角线上的元素的乘积。即特别地,对角行列式等于对角线元素的乘积,即.类似地,.(2) 设,则.(3) 范德蒙(Vandermonde)行列式计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值。重点和难点:行列式的计算,要注重学会利用行列式性质及按行(列)展开等基本方法来简化行列式的计算。例:课本P.27例1例2例:课本P.29例3本授课单元教学手段与方法:讲授与练习相结合以从行列式的定义为切入口,引导学生探讨行列式的各种性质。通过大量的例题引导学生掌握如何利用行列式性质及按行(列)展开等基本方法来简化行列式的计算。本授课单元思考题、讨论题、作业:思考题问:当线性方程组的系数行列式为零时,能否用克莱姆法则解方程组?为什么?此时方程组的解为何?答:当线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论