




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
组合数学教案范例 教学目标 (1)使学生正确理解组合的意义,正确区分排列、组合问题; (2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系; (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力; (4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。 教学建议 一、知识结构 二、重点难点分析 本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。 组合与组合数,也有上面类似的关系。从n个不同元素中任取m(mn)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。 解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘) 三、教法设计 1对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系 2学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题这样既调动了学生学习的积极性,又在编题辨题中澄清了概念 为了理解排列与组合的概念,建议大家学会画排列与组合的树图如,从a,b,c,d4个元素中取出3个元素的排列树图与组合树图分别为: 排列树图 由排列树图得到,从a,b,c,d取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.dca,dcb. 组合树图 由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd). 从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图 学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式 3排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题 对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择最佳方案,/Article/Index.html总结解题规律对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高 4两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是 这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是一对应的 对定理2,可启发学生从下面问题的讨论得出从n个不同元素,里每次取出m个不同的元素(),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有的;(3)在这些组合里,有多少个是含有的;(4)从上面的结果,可以得出一个怎样的公式在此基础上引出定理2 对于,和一样,是一种规定而学生常常误以为是推算出来的,因此,教学时要讲清楚 教学设计示例 教学目标 (1)使学生正确理解组合的意义,正确区分排列、组合问题; (2)使学生掌握组合数的计算公式; (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力; 教学重点难点 重点是组合的定义、组合数及组合数的公式; 难点是解组合的应用题 教学过程设计 ()导入新课 (教师活动)提出下列思考问题,打出字幕 字幕一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题? (学生活动)讨论并回答 答案提示:(1)排列;(2)组合 评述问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题这节课着重研究组合问题 设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题 (二)新课讲授 提出问题创设情境 (教师活动)指导学生带着问题阅读课文 字幕1排列的定义是什么? 2举例说明一个组合是什么? 3一个组合与一个排列有何区别? (学生活动)阅读回答 (教师活动)对照课文,逐一评析 设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境 【归纳概括建立新知】 (教师活动)承接上述问题的回答,展示下面知识 字幕模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合如前面思考题:6个火车站中甲站乙站和乙站甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合 组合数:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为. 评述区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题 (学生活动)倾听、思索、记录 (教师活动)提出思考问题 投影与的关系如何? (师生活动)共同探讨求从个不同元素中取出个元素的排列数,可分为以下两步: 第1步,先求出从这个不同元素中取出个元素的组合数为; 第2步,求每一个组合中个元素的全排列数为 根据分步计数原理,得到 字幕公式1: 公式2: (学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票 设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去 【例题示范探求方法】 (教师活动)打出字幕,给出示范,指导训练 字幕例1列举从4个元素中任取2个元素的所有组合 例2计算:(1);(2) (学生活动)板演、示范. (教师活动)讲评并指出用两种方法计算例2的第2小题 字幕例3已知,求的所有值. (学生活动)思考分析 解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年哈尔滨工程大学发展计划处学科专业建设办公室管理岗位招聘2人模拟试卷有完整答案详解
- 2025贵阳学院人才引进15人模拟试卷及答案详解(典优)
- 2025黑龙江双鸭山市饶河县招募就业见习单位及招聘见习人员668人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025年河北石家庄协和医学中等专业学校公开招聘教师20名模拟试卷带答案详解
- 2025国能包头煤化工有限责任公司高校毕业生招聘人员模拟试卷及答案详解(名校卷)
- 2025福建漳州市医院临时聘用人员(第二批)考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025江西南昌市劳动保障事务代理中心招聘外包人员1名考前自测高频考点模拟试题及参考答案详解
- 2025年龙岩市供电服务有限公司招聘59人考前自测高频考点模拟试题及一套答案详解
- 2025湖北恩施州巴东县信陵镇人民政府公益性岗位人员招聘8人考前自测高频考点模拟试题附答案详解(完整版)
- 2025广西百色市平果市民政局公益性岗位人员招聘1人考前自测高频考点模拟试题附答案详解(突破训练)
- 肝囊肿的护理查房
- 公司厂房出租管理制度
- 2025至2030年中国物联网金融行业市场竞争力分析及发展策略分析报告
- 2025年锑矿合作协议书
- 2025年中考历史总复习《中国历史》八年级上册知识要点汇编
- 工程带班合同协议
- 电动工具智能制造工艺-全面剖析
- 介入导管室手术交接流程
- 人教版劳动教育六年级上册全册教学设计
- 《小米智能家居》课件
- ISO9001质量管理体系课件
评论
0/150
提交评论