机械能守恒).docx_第1页
机械能守恒).docx_第2页
机械能守恒).docx_第3页
机械能守恒).docx_第4页
机械能守恒).docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

势能 机械能守恒定律基础知识回顾1、重力势能(1)定义: 由物体与地球之间的相对位置所决定的能叫重力势能. (2)公式:EP=mgh (3)说明: 重力势能是标量. 重力势能是相对的,是相对零势面而言的,只有选定零势面以后,才能具体确定重力势能的量值,故EP=mgh中的h是物体相对零势面的距离.一般我们取地面为零势面. 重力势能可正,可负,可为零.若物体在零势面上方,重力势能为正;物体在零势面下方,重力势能为负;物体处在零势面上,重力势能为零.重力势能属于物体和地球共有.通常所说“物体的重力势能”实际上是一种不严谨的习惯说法.重力势能是相对的,但重力势能的变化却是绝对的,即与零势能面的选择无关.2、重力做功(1)公式:WG=mgh h为初、末位置间的高度差.(2)特点:重力做功与路径无关,只与初、末位置有关(即由初末位置间的高度差决定).3、重力做功与重力势能变化间的关系重力做正功,重力势能减少;重力做负功,重力势能增加。重力所做的功等于重力势能变化量的负值,即:WG=-EP=-(EP2-EP1)=-(mgh2-mgh1)=EP1-EP24、弹性势能 (1)定义:发生弹性形变的物体,由其各部分间的相对位置所决定的能,称为弹性势能. (2)说明:弹性势能是标量.劲度系数越大,形变越大,弹性势能越大(可多记公式:EP=Kx2/2).弹力所做的功与弹性势能的改变的关系跟重力做功与重力势能的改变的关系相同,即弹力所做的功也等于弹性势能改变量的负值.5机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.(2)说明机械能是标量,单位为焦耳(J).机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.6机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变.(2)表达式E1=E2或Ek1+EP1=EK2+EP2 重点难点例析一、重力做功的特点1.重力做功与路径无关,只与物体的始末位置的高度差和重力大小有关.2.重力做功的大小WG=mgh,h为始末位置的高度差.3.重力做正功,物体重力势能减少;重力做负功,物体重力势能增加.【例1】沿着高度相同,坡度不同,粗糙程度也不同的斜面向上拉同一物体到顶端,以下说法中正确的是( )A沿坡度小,长度大的斜面上升克服重力做的功多 B沿长度大、粗糙程度大的斜面上升克服重力做的功多C沿坡度大、粗糙程度大的斜面上升克服重力做的功少 D上述几种情况重力做功同样多【解析】重力做功的特点是,重力做功与物体运动的具体路径无关,只与初末位置物体的高度差有关,不论是光滑路径或粗糙路径,也不论是直线运动还是曲线运动,只要初末位置的高度差相同,重力做功就相同.因此,不论坡度大小、长度大小及粗糙程度如何,只要高度差相同,克服重力做的功就一样多,故选D. 拓展一质量为5kg的小球从5m高处下落, 碰撞地面后弹起, 每次弹起的高度比下落高度低1m,求:小球从下落到停在地面的过程中重力一共做了多少功? (g=9.8m/s2)一、 机械能守恒定律的条件和机械能守恒定律的常用数学表达式: 1. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化. 2.常用数学表达式:第一种:Ek1+EP1=EK2+EP2从守恒的角度表明物体运动过程中,初状态和末状态机械能相等第二种:Ek =-EP 从转化的角度表明动能的增加量等于势能减小量第三种:E1=-E2 从转移的角度表明物体1的机械能增加量等于物体2的机械能的减少量图5-4-1【例2】如图5-4-1所示,一轻质弹簧固定于O点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中( ) A重物重力势能减小 B重物重力势能与动能之和增大 C重物的机械能不变 D. 重物的机械能减少 【解析】物体从水平位置释放后,在向最低点运动时,物体的重力势能不断减小,动能不断增大.弹簧不断被拉长,弹性势能变大.所以物体减少的重力势能一部分转化为自身的动能,另一部分转化为弹簧的弹性势能.对整个系统机械能守恒,而对重物来说,机械能减少.答案:AD【点拨】重力势能属于物体和地球共有,通常所说“物体的重力势能”,只能省略“地球”,其他物体不能拓展关于物体的机械能是否守恒的叙述,下列说法中正确的是( )A做匀速直线运动的物体,机械能一定守恒; B做匀变速直线运动的物体,机械能一定守恒;C外力对物体所做的功等于零时,机械能一定守恒; D物体若只有重力做功,机械能一定守恒.【解析】做匀速直线运动的物体是动能不变;势能仍可能变化,选项A错;做匀变速直线运动的物体,动能不断增加,势能仍可能不变,选项B错;外力对物体所做的功等于0时,动能不变;势能仍可能变化,选项C错;机械能守恒条件是物体只有重力做功或只有弹力做功,D对.三、应用机械能守恒定律解题的基本步骤1.根据题意,选取研究对象(物体或相互作用的物体系).2.分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件3.若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值4.根据机械能守恒定律列方程,并代人数值求解图5-4-2 易错门诊【例3】如图5-4-2使一小球沿半径为R的圆形轨道从最低点B上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A?【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A时的势能等于它在圆形轨道最低点B时的动能(以B点作为零势能位置),所以为从而得【错因】小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道.要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足式中,NA为圆形轨道对小球的弹力.上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当NA=0时,vA最小,vA=.这就是说,要使小球到大A点,则应使小球在A点具有速度vA 【正解】以小球为研究对象.小球在轨道最高点时,小球在圆形轨道最高点A时满足方程 (1)根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程 (2)解(1),(2)方程组得当NA=0时,vB为最小,vB=.所以在B点应使小球至少具有vB=的速度,才能使小球到达圆形轨道的最高点A.mF图5-4-3课堂自主训练1.如图5-4-3所示,质量为m的物体静止在地面上,物体上面连着一个轻弹簧,用手拉住弹簧上端将物体缓慢提高h,不计弹簧的质量,则人对弹簧做的功应( ) A.等于mgh B.大于mgh C.小于mgh D.无法确定h1h2图5-4-4【解析】人对弹簧做的功应等于物体重力势能的增加和弹簧弹性势能的增加之和,物体的重力势能增加了mgh,所以人做的功应大于mgh.2. 如图5-4-4所示,两个底面积都是S的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为的同种液体,阀门关闭时两桶液面的高度分别为h1和h2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:阀门打开,两边液面相平时,两桶内液体的重力势能总和为由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功3.某人站在离地10m高处,将0.1Kg的小球以20m/s的速度抛出,则人对小球做了多少功?小球落地时的速度多大?(不计空气阻力);若小球落地时速度实际为24m/s,则小球克服阻力做了多少功?(g取10m/s2)1.2J课后创新演练1关于重力势能的理解,下列说法正确的是( )A重力势能是一个定值 . B当重力对物体做正功时,物体的重力势能减少.C放在地面上的物体,它的重力势能一定等于0 .D重力势能是物体和地球共有的,而不是物体单独具有的.2质量相同的实心木球和铜球,放在同一水平桌面上,则它们的重力势能是( )A木球大 B铜球大 C一样大 D不能比较图5-4-53如图5-4-5从离地高为h的阳台上以速度v竖直向上抛出质量为m的物体,它上升 H后又返回下落,最后落在地面上,则下列说法中正确的是(不计空气阻力,以地面为参考面)( )A物体在最高点时机械能为mg(H+h);B物体落地时的机械能为mg(H+h)+ mv2/2C物体落地时的机械能为mgh+mv2/2D物体在落回过程中,经过阳台时的机械能为mgh+mv2./24在离地高为H处以初速度v0竖直向下抛一个小球,若与地球碰撞的过程中无机械能损失,那么此球回跳的高度为( )AH+ BH- C D5如图5-4-6所示,质量为m和3m的小球A和B,系在长为L的细线两端,桌面水平光滑,高h(h0,机械能增加. WFm),跨放在一个光滑的半圆柱体上.两球由水平直径AB的两端由静止释放,当m刚好到达圆柱体的最高点C时,恰好脱离圆柱体.则两小球的质量之比为多少?ABh图5-5-167.如图5-5-16所示,跨过同一高度的滑轮的细线连着质量相同的物体A和B,A套在光滑水平杆上,定滑轮离水平杆高h=0.2m,开始时让连A的细线与水平杆夹角=530,由静止释放,在以后的过程中A能获得的最大速度是多少?(Sin530 = 0.8 , Cos530 = 0.6 , g取10m/s2)8.如图5-5-17所示,光滑水平面AB与竖直面的半圆形导轨在B点衔接,导轨半径R,一个质量为m的静止物块在A处压缩弹簧,把物块释放,在弹力的作用下获得一个向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,求:(1)弹簧对物块的弹力做的功;(2)物块从B至C克服阻力所做的功;ABCR图5-5-17(3)物块离开C点后落回水平面时动能的大小.1 ABD 2ABCD 3BC 4B 5B 6【解析】经分析可知,A、B运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论