外文翻译--下控制臂橡胶衬套刚度对双横臂独立悬架影响_第1页
外文翻译--下控制臂橡胶衬套刚度对双横臂独立悬架影响_第2页
外文翻译--下控制臂橡胶衬套刚度对双横臂独立悬架影响_第3页
外文翻译--下控制臂橡胶衬套刚度对双横臂独立悬架影响_第4页
外文翻译--下控制臂橡胶衬套刚度对双横臂独立悬架影响_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附 录 Influence of Front Double wishbone Independent Suspension Performance on Front Rubber Bushing Stiffness of Lower Control Arm Liu Xintian, Hung Hu ,Wang Jichang, Zhao Lihui, Gao Hui, WangYansong Abstract-Front double wishbone Independent suspension is built according to hard point parameters of a car. After the rubber bushing stiffness of lower control arm is changed The suspension performance is analyzed and discussed with multibody dynamic and Suspension Kinematics theory. The conclusion can be drawn as follows:when wheels are hoping, All the stiffness of lower control arm have no effect on camber angle, caster angle and kingpin_incl_angle, and torsion stiffness of rubber bushing has heavy effect on toe angle, but axial, radial stiffness have no effect ,While steering, all the stiffness of lower control arm rubber bushing have no effect on camber angle and toe angle, torsion stiffness has affects on camber angle ,axial stiffness has a little and radial stiffness has heavy , axial and torsion stiffness have none on kingpin_ incl _angle, but radial stiffness has heavy During the analyze of traction force and brake force ,torsion stiffness of lower control arm rubber bushing has no effect on camber angle, kingpin_ incl_ angle and toe angle , axial stiffness has a little, and radial stiffness heavy , According to the curve of caster angle VS brake force, radial and axial stiffness of rubber bushing have a little affects on caster angle, but torsion stiffness none Keywords-Front Double Wishbone Independent Suspension, rubber bushing, stiffness I. INTRODUCTION Double wishbone independent suspension is widely used on automobile now. Two wishbones have equal length or not. Equal length of double wishbone independent suspension is Not usually used now , Unequal length of double wishbone independent suspension can keep good road ability and reduce the interference between suspension and steer bar ,with reasonable structural parameters and Proper arrangements to make the parameter of wheel spin and wheel location floating in Permissible range. therefore, it is widely used in front suspension of car and small truck. Front double wishbone independent suspension is regard as research object using multi body dynamics and Suspension Kinematics theory to analyze and discus the influence of suspension performance by axial , torsion , radical stiffness of rubber bushing. II THE MODEL OF THE MULTI BODY DYNAMICS Multibody dynamics theory is the subject that study on the movement rule of the object in system . It is composed of multi_rigid_body dynamics and multi_fexible_body dynamics: 0),(),(),( tqqQtqqtqtqM 0),( tqQ Where q, 1q , nRq 2 are systems system position,speed,acceleration vector, mR is langrange multiplier, t R denote the time , M nmR denote inertia matrix of mechanical system, nmq RQ deonte constraint jaclbian matrix, Q nR denote outside force vector , mR denote location constraint equation. 0),(),(),( tqqtqtqq q ; 0),(),(),( tqqnqtqtqqq q ; Where v(q,t) ),( tqtis speed right side, tqtqqtqqntqq 2)(),(is accleration right side. Initial condition q(0)= 0q q (0)= 0q Putting the initial condition into(2)and (3), the rigid movement can be calculated by above functions III FRONT DOUBLE WISHBONE INDEPENDENT SUSPENSION MODEL Figure 1, front double wishbone independent suspension model According to the suspension key hard point value of a certain car,front double wishbone independent suspension Kinematics model is built as shown Figure 1 .The characteristics of location parameters are analyzed in some operating conditions. During the analysis, axial ,torsion, radical stiffness of rubber bushing is respectively increasing to 5 times of original, and then comparison and analysis with the original. IV THE INFLUENCE OF WHEEL LOCATION PARAMETERS BY LOWER CONTROL ARM FRONT BUSHING STIFFNESS When front rubber bushing stiffness of lower control arm is changed, the influence of wheel location parameters are discussed separately under the conditions of wheel hop, steering, traction force and braking force. A. Wheel hop Camber angle VS wheel travel Caster angle VS wheel travel Kingpin_incl_angle VS Wheel travel Toe angle VS Wheel travel Figure 2.The curve of rubber bushing stiffness of lower control arm, wheel location parameters and wheel travel. In fig 2, the four curves are under the conditions of unchanging lower control arm rubber bushing stiffness and radial, axial, torsion stiffness increasing 5 times(the changes of lower control arm rubber bushing stiffness are also like this in fig.3,4 and 5). In fig.2 while wheels is hoping ,according to the curve of camber angle vs wheel travel , caster angle vs wheel travel and kingpin_incl_angle vs wheel travel ,the conclusion is drawn that radial ,axial and torsion stiffness of rubber bushing has no the toe angle ,Radical stiffness of rubber bushing has heavy on the toe angle, but axial and torision stiffness have a little from the curve of toe angle vs wheel travel. B Steering analyze Camber angle VS Steering angle Caster angle VS Steering angle Kingpin_incl_angle vs steering angle Toe angle vs steering angle Figure 3.The curve of rubber bushing stiffness of lower control arm ,wheel location parameters and Steering angle In fig.3,While steering ,according to the curve of Camber angle VS Steering angle and Toe angle VS Steering angle ,radial ,axial and torsion stiffness of rubber bushing has no effect on camber angle and toe angle .In the curve of caster angle VS Steering angle, torsion stiffness of rubber bushing has no effect on caster angle ,radical stiffness has a little but axial stiffness heavy .Axial and torsion stiffness of rubber bushing has no effect on kingpin_ incl_ angle ,but axial stiffness has heavy by the curve of kingpin_incl_angle VS Steering angle. C brake force analyze Caster angle vs brake force Kingpin_incl_angle vs brake force Toe angle vs brake force Figure 4. The curve of rubber stiffness of lower control arm ,wheel location parameters and brake force In fig.4,when braking ,according to the curve of Camber angle VS Brake force, kingpin_incl_angle VS Brake force and Toe angle VS Brake force, torsion stiffness of rubber bushing has no effect on the camber angle, kingpin_incl_angle and toe angle ,axial stiffness has a little, but radial stiffness heavy .In the curve of caster angle VS Brake angle ,radial and axial stiffness of rubber bushing have a little effect on caster angle ,but torsion stiffness has none. D traction force analyze Camber angle vs traction force Caster angle vs traction force Kingpin_incl_angle vs traction force Toe angle vs traction force Figure 5. The curve of rubber bushing stiffness of lower control arm, wheel location parameters and traction force In fig.5, while braking, according to the curve of Camber angle VS Traction force, kingpin_incl_angle VS Traction force and Toe angle VS traction force ,torsion stiffness of rubber bushing has little effect on the camber angle, kingpin_ incl_ angle and toe angle, axial stiffness has a little, but radial stiffness heavy. In the curve of caster angle VS Traction angle, radial and axial stiffness have a little effect on caster angle, and torsion stiffness has none. V. CONCLUSIONS Using multi-body dynamics and suspension Kinematics theory to analyze the influence of wheels location parameter. when the radial, axial and torsion stiffness of lower control arm front ,rear rubber bushing is changing . when wheels hop,according to the analyze result of radial, axial, torsion stiffness of lower control arm front rubber bushing ,all the stiffness of lower control arm have no effect on camber angle, caster angle ,caster angle and kingpin _incl_ angle ,and torsion stiffness of rubber bushing has heavy effect on toe angle, but axial radial stiffness have no effect .while steering, all the stiffness of lower control arm rubber bushing have no effect on camber angle and toe angle , torsion stiffness has no on caster angle, axial stiffness has little and radial stiffness has heavy ,axial and torsion stiffness have none on kingpin _ incl _ angle, but radial stiffness has heavy. In the analyze of traction force and brake force, torsion stiffness of lower control arm rubber bushing has no effect on camber angle , kingpin_ incl _ angle and toe angle ,axial stiffness has a little, and radial stiffness heavy. According to the curve of caster angle VS brake force, radial and axial stiffness of rubber bushing have a little affects on caster angle ,but torsion stiffness none. 下控制臂橡胶衬套刚度对双横臂独立悬架影响 摘要 -前双横臂独立悬架的建立是根据汽车硬点参数,对 性能进行了分析,并与多体动力学和悬架运动学进行了理论探讨。可以得出如下结论 :当车轮需要运转时, 所有的下控制臂的刚度并没有影响外倾角,后倾角和主销内倾角,橡胶衬套和扭转刚度对前束角产生很大影响, 而轴向,径向刚度没有任何效果。然而在转向时,所有的下控制臂衬套并无外倾角和前束角的影响,及扭转刚度对弯度角的影响, 轴向刚度,径向刚度相对较大,轴向和扭转刚度对主销内倾角无影响,但径向刚度较大影响。 在分析牵引力和制动力的时候, 下控制臂扭转橡胶衬套刚度没有对车轮外倾角,主销内倾角和前束角产生影响,对轴向刚度影响的却很少,径向刚度大, 根据后倾角 与制动力曲线,径向和轴向橡胶衬套刚度对施力者有一个小角度的影响,但扭转刚度不变。 关键词 -前双横臂独立悬架,橡胶衬套,刚度 I、 简介 如今, 双横臂独立悬架被广泛用于汽车行业中。等长横臂和不等长横臂,现在等长的双横臂独立悬架通常不是很常用,不等长的双横臂独立悬架可以保持良好的能力和减少道路悬挂之间的干扰,如果能够设置合理的结构参数和适当安排,就可以以使车轮打滑和车轮定位参数在允许范围内浮动。因此,它被广泛应用于汽车和小卡车前悬架等。 前双横臂独立悬架被做为研究对象,运用多体动力学和悬架运动学理论来分析悬浮轴, 扭转,橡胶衬套刚度性能影响的激励方面等内容。 II、 多体运动学分析 根据多体运动学研究物体运动规律 : 0),(),(),( tqqQtqqtqtqM ; 0),( tqQ ; 初始条件 q(0)= 0q q (0)= 0q III、 前双横臂独立悬架模型 依 据某悬架关键点的重要性,建立前双横臂独立悬架运动学模型如图 1 所示 .在某些工况下分析,寻找位置参数的特点。 在分析过程中,轴向,扭转,橡胶衬套刚度分别比原来相比增长了 5 倍,然后比较,并与原有的数据分析 。 图 a 前双横臂独立悬架模型 IV、 下横臂对车轮定位参数的影响 当 橡胶衬套控制臂的刚度改变时, 对车轮定位参数的影响进行了车轮下单独跳,转向,牵引力和制动力的条件等方面的讨论。 A. 轮跳 车轮外倾角与车 轮跳动 主销后倾角与车轮跳动 主销内倾角与车轮跳动 车轮前束角与车轮跳动 在图 2 中,在四条曲线下不变的情况下控制臂衬套刚度橡胶和径向,轴向,扭转刚度增加 5 倍(下控制臂衬套刚度也像 3, 4 和 5 那样)。根据弯度角曲线与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论