



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学高考综合能力题选讲20曲线轨迹的探求100080 北京中国人民大学附中 梁丽平题型预测解析几何主要研究两大类问题:一是根据题设条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质从这个角度来说,轨迹问题成为解析几何高考命题的重点和热点也就不足为奇了探求动点的轨迹,主要有以下方法:(1)定义法:若能结合题目条件分析出轨迹是什么曲线,则可利用曲线的定义得到结论(2)直接法:直接建立动点所满足的关系式,然后通过化简方程得出结论(3)间接法:又分为相关点法、参数法、交轨法等解答轨迹问题时,若能充分挖掘几何关系,则往往可以简化解题过程范例选讲例1 已知双曲线的中心在原点,以坐标轴为对称轴,离心率为,且双曲线上动点P到点A(2,0)的最近距离为1()证明:满足条件的双曲线的焦点不可能在y轴上;()求此双曲线的方程;()设此双曲线的左右焦点分别是,Q是双曲线右支上的动点,过作的平分线的垂线,求垂足M的轨迹讲解:()可考虑反证法证明:设双曲线的实半轴长为,虚半轴长为,半焦距为,则由,得,所以,假设存在满足条件且焦点在y轴上的双曲线,则其渐近线方程为在此条件之下,一方面,我们当然可以设双曲线方程为:,然后把用表示,利用的最小值为1,推出矛盾而另一方面,是否有更简捷的办法呢?由于在前面的解答过程中已经求出了双曲线的渐近线,不妨作大胆的猜想:“点A到渐近线的距离大于1”经过验证,猜想正确(事实上,点A(2,0)到渐近线的距离为)所以双曲线上动点到点A的距离都超过1所以,不存在满足条件且焦点在y轴上的双曲线()解:由()可设双曲线的方程为:,则这个双曲线上任一点到点的距离为:,若,则当时,有最小值,由,解得(舍去);若,则当时,有最小值,由,解得;双曲线的方程为:()解:设点M的坐标为(x,y),延长与交于点T,连接OM QM平分,且QM, ,又点Q是双曲线右支上的动点, , ,即点M在以O为圆心,为半径的圆上 当点Q沿双曲线右支运动到无穷远处时,QM趋近于双曲线的渐近线, 点M的轨迹是圆弧CBD,除去点C,点D.方程为:点评:挖掘图形的几何性质,运用定义求轨迹是求动点轨迹的常用方法例2如图,过点A(1,0),斜率为k的直线l与抛物线C:y2=4x交于P,Q两点.(I)若曲线C的焦点F与P,Q,R三点按如图顺序构成平行四边形PFQR,求点R的轨迹方程;(II)设P,Q两点只在第一象限运动,(0,8)点与线段PQ中点的连线交x轴于点N,当点N在A点右侧时,求k的取值范围.讲解:(I)要求点R的轨迹方程,注意到点R的运动是由直线l的运动所引起的,因此可以探求点R的横、纵坐标与直线l的斜率k的关系然而,点R与直线l并无直接联系与l有直接联系的是点P、Q,通过平行四边形将P、Q、R这三点联系起来就成为解题的关键由已知,代入抛物线C:y2=4x的方程,消x得: 、Q 解得设,M是PQ的中点,则由韦达定理可知:将其代入直线l的方程,得 四边形PFQR是平行四边形, 中点也是中点.又 点R的轨迹方程为(II)因为P、在第一象限,所以,结合(I)得,点(0,8)与PQ中点所在直线方程为令y=0,得N点横坐标为:因为N在点A右侧,令,得解之得k0或 综合,得k的取值范围是 点评:选择合适的桥梁,促成已知和未知之间的转化是解决问题的关键本题中的中点M就起到这样的作用实际上,转移点法中的“转移”,参数法中的“参数”都表达了同样的意思高考真题1. (1995年全国高考题)已知椭圆,直线P是上一点,射线OP交椭圆于点R,又点Q在OP上且满足|OQ|OP|=|OR|2当点P在直线l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.2. (1999年全国高考题)如图,给出定点和直线是直线上的动点,的角平分线交于点求点的轨迹方程,并讨论方程表示的曲线类型与值的关系3(2001年上海春季高考)已知椭圆的方程为,点的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南财经工业职业技术学院《概率与统计》2024-2025学年第一学期期末试卷
- 防城港职业技术学院《卡通形象设计》2024-2025学年第一学期期末试卷
- 宁德师范学院《口腔颌面外科学综合实训》2024-2025学年第一学期期末试卷
- 浙江广厦建设职业技术大学《三维动画特效》2024-2025学年第一学期期末试卷
- 2025-2030预制菜产业消费升级趋势及供应链优化与渠道变革投资前景分析报告
- 运焦车间防洪防汛应急预案(3篇)
- 大连有轨电车应急预案(3篇)
- 直播电商中直播电商的定价策略创新对GMV增长研究
- 直播电商中商品质量把控漏洞的完善机制对GMV增长研究
- 飞机上应急处置预案怎么写(3篇)
- 福建省福州市联盟校2023-2024学年高一下学期期末考试英语试题(解析版)
- 2025文化和旅游部直属事业单位招聘社会人员29人模拟试卷附答案详解
- 2024-2025学年重庆市万州区八年级(下)期末语文试卷
- 2025年乒乓球二级裁判考试题及答案
- 血标本采集考试试题附有答案
- 2025年公共安全生产试题及答案
- 员工工资及考勤管理制度
- 浙江省温州市龙湾区2024-2025学年七年级下学期学业水平期末检测数学试题
- 2025年江苏省苏豪控股集团有限公司校园招聘笔试备考试题及答案详解(必刷)
- (完整)中小学“学宪法、讲宪法”知识竞赛题库及答案
- 2025年行政执法人员执法证考试必考多选题库及答案(共300题)
评论
0/150
提交评论