证明数项级数发散以及函数项级数非一致收敛的方法 终.pdf_第1页
证明数项级数发散以及函数项级数非一致收敛的方法 终.pdf_第2页
证明数项级数发散以及函数项级数非一致收敛的方法 终.pdf_第3页
证明数项级数发散以及函数项级数非一致收敛的方法 终.pdf_第4页
证明数项级数发散以及函数项级数非一致收敛的方法 终.pdf_第5页
免费预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

证明数项级数发散以及函数项级数非一致收敛的方法 摘要通过对例题的分析与讲解 系统地归纳有关级数发散的证明方法和函数项级数非一致 收敛的证明方法 关键词 级数 发散 函数项级数 非一致收敛 在解决有关级数的问题时 我们经常会遇到判断级数敛散性的问题 多半情况下 这些级数都是收敛的或一致收敛的 学生经常只需运用一些判别法就能顺利地做 出来 相反 当遇到一些发散或非一致收敛的题目时 我们有时会手足无措 不 知该如何下笔 这时 我们就需要一点点逆向思维 首先 我们先讨论一下数项级数的发散性问题 一 Leibniz 定理的逆否命题 证明级数的通项不趋于零 由 Leibniz 定理的逆否命题可知 若级数的通项随着 n 的增大不趋于零 那么 该级数一定发散 例 1 判断下列级数的敛散性 1 1 12 n n nn 2 1 2 2 2 1 ln 2 n n n n 第一个级数的通项 n a 12 n nn 由极限的知识 我们很容易知道 n n a lim 2 1 0 故 1 中的级数是发散的 而 2 中的通项可先进行化简 使之成为我们熟知 的可求极限的形式 n b 2 1 1ln 2 22 2 n nn n 1 n 故此级数是发散的 这种方法是证明数项级数发散时较为常用的方法 只要有扎实的极限功底 许多题 目都能一目了然 迎刃而解 二 利用 Cauchy 收敛准则 数列的柯西收敛原理是一个充分必要条件 所以我们只要对取定的 0 找到适 当的 p 的值 使得 0 npn ss即可 例 2证明级数 1 1 n n 发散 取 p n 那么 npn ss 1 1 n 2 1 n nn 1 nn n 2 1 此时取 0 2 1 便可 以说明 1 1 n n 是发散的 这类题中 解题思路一般是先取到 p 为 n 的整数倍 然后利用 0 npn ss找到 0 就行 三 对正项级数 利用判别法 这里的判别法主要指的是根值判别法 柯西判别法 比值判别法 达朗贝尔判 别法 以及比较判别法 其中都有对级数发散情况的讨论 因此 在解决正项级数 的敛散性方面 这种方法也比较常见 例 3判断下列级数的敛散性 1 1 n n n n 2 1 1 n n nn 在 1 中我们注意通项中有 n 次幂的存在 首先就会想到用根值判别法 而通 项的分母又有阶乘 我们又会联想到用比值判别法 其实 这个题目用这两种方 法都可以求解 在这里 我用比值判别法来解一下 记通项 n a n nn 则有 1 n a 1 1 1 n n n 故 n n n a a 1 lim n lim 1 1 1 n n n n n n e 1 由柯西判别法可知 该级 数是发散的 下题联想到 n lim n n 1 故由比较判别法知 它与 1 1 n n 的敛散性相同 因此也是发散的 这种证明方法需要首先对级数进行观察 若级数中有 n 次幂 柯西判别法当是 首选 遇到阶乘等情况时 我们通常会选择达朗贝尔判别法 而比较判别法需要 我们平时积累一些常见的级数的敛散性和极限的知识 四 对正项级数 证明部分和数列无上界 如果我们能证明其部分和数列无上界 那么就可以说明当 n 时 级数趋于 无穷大 即为发散 例 4 证明级数 1 2 1 3 1 4 1 5 1 是发散的 由柯西收敛原理 原级数与新级数 2 1 3 1 4 1 5 1 的收敛性相同 而新级数 的前 n 项部分和 12 1 2 1 1 kk n k 2 1 2 1 1 kk n k n k k k 1 2 12 2 1 n k k 1 1 n 由此即知 新级数的部分和数列无上界 所以原级数发散 运用这种方法通常需要采用加括号 放缩等手段 使那些我们比较陌生的级数 转化为熟知的 这样做起题来才能事半功倍 五 把级数通项分解为一个熟练级数的通项和一个发散级数的通项之和或差的形 式 如果级数能过进行上述转化 那么原级数一定是发散的 例 5 级数 I 1 2 1 2 3 1 4 1 2 5 1 是否收敛 为什么 原级数 I 1 2 2 1 12 1 n nn 1 2 12 1 n n 12 1 n n 前者是收敛的 后者是发散的 故原级数发散 这种方法通常会在带有三角函数的级数中用到 例 6 讨论级数 1 sin n n nx 0 x0 0 n N 及 0 x 2 0 1 n 使得 2 0 3 0 0 1 1 n n n 0 0 1n n 2 1 故 1 3 1 n xn n 在 0 1 上非一致收敛 而下一题中 只需取 0 2 且 0 x 2 3 0 n 即可证明 这种证明方法在平时并不是很普遍 需要在学习过程中的积累以及做题时的灵 感 虽然在解题过程中是先取定 0 但在实际做的时候 是先找出适当的 0 x 然后通过 00 xsxsn 0 来取定 0 二 利用 Cauchy 收敛准则 这里先看一道例题 例 9 设 xfn在 ba 上连续 且 xfn发散 证明 xfn在 ba 上非一致收敛 证明 假设 xfn在 ba 上一致收敛 由 Cauchy 准则知 0 N 0 当 n m N 时 对 x ba 有 xfxf mn 又 xfn在 ba 上连续 故 xfxf mn bx lim 即 xfxf mn 故 bfn收敛 这与 bfn 发散 矛盾 因此 xfn在 ba 上非一致收敛 上题的解题思路就是利用反证法 引入 Cauchy 收敛准则 然后将函数在定义 域内的整体性质转化成某一点的性质 从而引发与题目的矛盾 证明假设时错误 的 下面的例题是这个命题的变形 可以作为一种非一致收敛判别法来使用 例 10 设对每一个 n 函数 xun在 x c 处左连续 又已知 1n n cu发散 证明 对任意的 0 1n n xu在区间 c c 上必不一致收敛 证明 用反证法 设有 0 使得 1n n xu在区间 c c 上一致收敛 这就是 0 N 0 当 n N 时 p N和 每 个 x cc 都 有 xuxu pnn 1 由题设函数 xun在 x c 处左连续 在 中 令 x c 得到 cucu pnn 1 由数项级数的 Cauchy 收敛准则知道 这与 1n n cu发散的条件相矛盾 故命题获证 例如 函数项级数 1n nx ne在 x 0 时发散 因此该级数在 0上必不一致收敛 三 利用和函数或极限函数的某种性质的逆否命题 其中最常用的就是连续性命题的逆否命题 若函数项级数在每一项于区间 I 上 处处连续 又已知其极限函数在 I 上不是处处连续的 则级数于 I 上非一致收敛 这种方法较前面几种并不常见 在此就不一一赘述了 总结下来 证明函数项级数非一致收敛的方法要比证明数项级数发散的方法 少得多 也复杂得多 解决这些题目时 最重要的还是要透彻地理解发散和非一 致收敛的定义 再与题目联系起来 找到问题的突破口 经过不断地练习和总结 后 许多题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论