




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1(2012深圳中学月考)与直线2xy40平行的抛物线yx2的切线方程是()A2xy30 B2xy30C2xy10 D2xy10解析设切点坐标为(x0,x),则切线斜率为2x0,由2x02得x01,故切线方程为y12(x1),即2xy10.答案D2(2012贵阳模拟)函数y4x2的单调增区间为()A(0,) B.C(,1) D.解析由y4x2得y8x,令y0,即8x0,解得x,函数y4x2在上递增答案B3(2012云南师大附中月考)如果函数yf(x)的图象如右图,那么导函数yf(x)的图象可能是()解析由原函数的单调性可以得到导函数的正负情况依次是正负正负,只有答案A满足答案A4已知直线ykx是yln x的切线,则k的值为()Ae Be C. D解析设(x0,ln x0)是曲线yln x与直线ykx的切点,由y知y|xx0由已知条件:,解得x0e,k.答案C5函数f(x)ax3x在R上为减函数,则()Aa0 Ba1 Ca0 Da1解析f(x)3ax21若a0,则f(x)10,f(x)在R上为减函数若a0,由已知条件即解得a1时,1ln(x1)x.(1) 解函数f(x)的定义域为(1,)f(x)1f(x)与f(x)随x变化情况如下:x(1,0)0(0,)f(x)0f(x)0因此f(x)的递增区间为(1,0),递减区间为(0,)(2)证明由(1) 知f(x)f(0)即ln(x1)x设h(x)ln (x1)1h(x)可判断出h(x)在(1,0)上递减,在(0,)上递增因此h(x)h(0)即ln(x1)1.所以当x1时1ln(x1)x.10(12分)设函数f(x)x2exxex.(1)求f(x)的单调区间;(2)若当x2,2时,不等式f(x)m恒成立,求实数m的取值范围解(1)函数f(x)的定义域为( ,),f(x)xex(exxex)x(1ex),若x0,则1ex0,所以f(x)0;若x0,则1ex0,所以f(x)0;f(x)在(,)上为减函数,即f(x)的单调减区间为(,)(2)由(1)知,f(x)在2,2上单调递减f(x)minf(2)2e2,m2e2时,不等式f(x)m恒成立B级综合创新备选(时间:30分钟满分:40分)一、选择题(每小题5分,共10分)1(2012荆州中学月考)对于R上可导的任意函数f(x),若满足(x1)f(x)0,则必有()Af(0)f(2)2f(1)解析不等式(x1)f(x)0等价于或可知f(x)在(,1)上递减,(1,)上递增,或者f(x)为常数函数,因此f(0)f(2)2f(1)答案C2(2011辽宁)函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,则f(x)2x4的解集为()A(1,1) B(1,)C(,1) D(,)解析设g(x)f(x)2x4,由已知g(x)f(x)20,则g(x)在(,)上递增,又g(1)f(1)20,由g(x)f(x)2x40,知x1.答案B二、填空题(每小题4分,共8分)3函数f(x)x(a0)的单调递减区间是_解析由axx20(a0)解得0xa,即函数f(x)的定义域为0,a,f(x),由f(x)0解得x,因此f(x)的单调递减区间是.答案4(2012武汉模拟)已知函数f(x)x2(xa)若f(x)在(2,3)上单调则实数a的范围是_;若f(x)在(2,3)上不单调,则实数a的范围是_解析由f(x)x3ax2得f(x)3x22ax3x.若f(x)在(2,3)上不单调,则有解得:3a.答案(,3 ,三、解答题(共22分)5(10分)已知函数f(x)x3ax1(1)若f(x)在(,)上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(1,1)上单调递减?若存在,求出a的取值范围;若不存在试说明理由解(1)f(x)3x2a由0,即12a0,解得a0,因此当f(x)在(,)上单调递增时,a的取值范围是(,0(2)若f(x)在(1,1)上单调递减,则对于任意x(1,1)不等式f(x)3x2a0恒成立即a3x2,又x(1,1),则3x23因此a3函数f(x)在(1,1)上单调递减,实数a的取值范围是3,)6()(12分)(2012浙江五校联考)已知函数f(x)aln xax3(aR)(1)求函数f(x)的单调区间;(2)若函数yf(x)的图象在点(2,f(2)处的切线的倾斜角为45,对于任意的t1,2,函数g(x)x3x2在区间(t,3)上总不是单调函数,求m的取值范围解(1)根据题意知,f(x)(x0),当a0时,f(x)的单调递增区间为(0,1,单调递减区间为(1,);当a0时,f(x)的单调递增区间为(1,),单调递减区间为(0,1;当a0时,f(x)不是单调函数(2)f(2)1,a2,f(x)2ln x2x3.g(x)x3x22x,g(x)3x2(m4)x2.g(x)在区间(t,3)上总不是单调函数,且g(0)2,由题意知:对于任意的t1,2,g(t)0恒成立,m9.【点评】 利用导数解决函数的单调性、最值、极值等问题时,主要分以下几步:,第一步:确定函数的定义域;第二步:求函数f(x)的导数f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年温州永嘉县人民医院医共体分院招聘劳务派遣人员2人考前自测高频考点模拟试题及参考答案详解一套
- 2025广西农村合作金融机构高校毕业生招聘473人考前自测高频考点模拟试题及一套参考答案详解
- 2025年哈尔滨市香电幼儿园招聘3人考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025办公用品采购合同协议书
- 2025年阜阳颍上县人民医院引进博士研究生2人考前自测高频考点模拟试题及答案详解(典优)
- 食安员初级考试题库及答案训练题
- 湖南职称土建考试题库及答案
- 广东表演考试题库及答案
- 青岛春考知识考试题库及答案
- 单招数学考试试卷及答案
- 数字经济学 课件全套 第1-15章 数字经济学基础 - 数字经济监管
- 辽宁省抚顺市新抚区2024-2025学年九年级上学期第一次月考数学试题(含答案)
- 校园消毒知识学习培训
- 中医适宜技术-中药热奄包
- 关于成立低空经济公司可行性分析报告
- 2024年第九届“学宪法、讲宪法”竞赛题库试卷及答案
- 配电室运行维护投标方案
- 血管导管使用指征、置管方法、使用与维护
- 2023年全国职业院校技能大赛-老年护理与保健赛项规程
- 工程项目挂靠协议书
- QB/T 2660-2024 化妆水(正式版)
评论
0/150
提交评论