数据分析面试的问题.doc_第1页
数据分析面试的问题.doc_第2页
数据分析面试的问题.doc_第3页
数据分析面试的问题.doc_第4页
数据分析面试的问题.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数据分析面试的问题 对于数据库分析人员来说,面试前做好面试准备很重要,你了解哪些面试问题呢?下面已经为你们了数据分析面试的问题,希望可以帮到你。 一、异常值是指什么?请列举1种识别连续型变量异常值的方法? 异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。 Grubbstest(是以FrankE.Grubbs命名的),又叫maximumnormedresidualtest,是一种用于单变量数据集异常值识别的统计检测,它假定数据集正态分布的总体。 总体标准差,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。 二、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。 聚类分析(clusteranalysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classificationanalysis)或数值分类(numericaltaxonomy)。聚类与分类的不同在于,聚类所要求划分的类是的。 聚类分析计算方法主要有:层次的方法(hierarchicalmethod)、划分方法(partitioningmethod)、基于密度的方法(density-basedmethod)、基于网格的方法(grid-basedmethod)、基于模型的方法(model-basedmethod)等。其中,前两种算法是利用统计学定义的距离进行度量。k-means算法的工作过程说明如下:首先从n个数据对象任意选择k个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数.k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 其流程如下: (1)从n个数据对象任意选择k个对象作为初始聚类中心; (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。 优点:本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K 缺点:1.K是事先给定的,但非常难以选定;2.初始聚类中心的选择对聚类结果有较大的影响。 三、根据要求写出SQL 表A结构如下: Member_ID(用户的ID,字符型) Log_time(用户访问页面时间,日期型(只有一天的数据) URL(访问的页面地址,字符型) 要求:提取出每个用户访问的第一个URL(按时间最早),形成一个新表(新表名为B,表结构和表A一致) createtableBasselectMember_ID,min(Log_time),URLfromAgroupbyMember_ID; 1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。 2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的? 3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则? 4、什么是:协同过滤、n-grams,mapreduce、余弦距离? 5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库? 6、如何设计一个解决抄袭的方案? 7、如何检验一个个人支付账户都多个人使用? 8、点击流数据应该是实时处理?为什么?哪部分应该实时处理? 9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好? 10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言? 11、你是如何处理缺少数据的?你推荐使用什么样的处理技术? 12、你最喜欢的编程语言是什么?为什么? 13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。 14、SAS,R,Python,Perl语言的区别是? 15、什么是大数据的诅咒? 16、你参与过数据库与数据模型的设计吗? 17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法? 18、你喜欢TD数据库的什么特征? 19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗? 20、如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出? 21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好? 22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少? 23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡? 24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些? 25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价? 26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法? 27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下) 28、什么是星型模型?什么是查询表? 29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程? 30、在SQL,Perl,C+,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论