




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新课标下高中数学教学模式的探究摘 要:新教材从理念、目标、形式到内容都较之旧教材有显著的不同,要求教师在教学中,对教学的每一个环节都需用心琢磨,合理选择教法,正确引导学法,并在实践中不断的总结,始能达到改革的预期目标关键词:探究;自信;理想青少年学生需要引导,“传道、授业、解惑”是我们人民教师的责任,而正确的引导学法,并在实践中不断总结,始能达到改革的预期目标 新课程标准指出:自主学习就是为学生获得终身学习能力和发展能力打好基础的 它把学生作为主动的求知者,在学习中培养他们主动学习、主动探求、主动运用的能力,使学生真正成为课堂的主体 让学生根据自己的体验,用自己的思维方式,自主地去探究,去亲近数学、体验数学、“再创造”数学和应用数学,真正成为数学学习的主人 本文从转变课堂的教学方式和学生学习方式出发,探究让研究走进课堂的同时,把理想教育融进知识学习的过程 一方面,通过动手实践自主探究和合作交流,体验成功的快乐;另一方面,通过拓展提升,培养学生思维的灵活性及学生的自信心 下面就结合笔者的教学经验谈谈如何在数学课中培养学生的自主探究学习能力及思维的灵活性通过让学生动手实践自主探究和合作交流,体验成功的快乐探究性学习是学生与生俱来的认知方式,数学知识、思想和方法必须由学生在现实的数学活动中理解和掌握,而不是单纯地依赖教师的讲解 动手实践、自主探究和合作交流是学生学习数学的重要方式新课程的一个重要理念就是提倡学生“做数学” 用亲身体验的方式去经历数学、探究数学 那么如何把数学课堂变为数学探究性活动的课堂呢?其实在教材中有许多重要的例题和习题,蕴含着数学的重要思想方法探究理念例1 已知直角梯形abcd中, abcd,ab=1,bc=2,cd=1+,过a作aecd,垂足为e,g,f分别为ad,ce的中点,现将ade沿ae折叠,使得deec 试在线段ae上找一点r,使得面bdr面bdc,并说明理由对于高三即将参加高考的学生,给出这样的问题,让他们立即得出结论是有困难的 在让学生经过充分的思考以后,每个学生都跃跃欲试学生1:分析可知,r点满足3ar=re时,面bdr面bdc证明:取bd中点q,连结dr,br,cr,cq,rq容易计算cd=2,br=,cr=,dr=,cq=,bd=2在bdr中,因为br=,dr=,bd=2,可知rq=,所以在crq中,cq2+rq2=cr2,所以cqrq又在cbd中,cd=cb,q为bd中点,所以cqbd所以cq面bdr,所以面bdc面bdr学生2:过e作escd于s,过s作sqbc,交bd于q,取er=sq,连结rq,容易得到r为ae上靠近a的一个四等分点教师:在探究中发现结论,终于收获成功的喜悦,实现理想需要我们经过努力!评析:随着教育改革的推进,它要求教师的教学要从“包办”到指导 因此,指导、培养学生的自主探究学习能力,养成良好学习的习惯,是增强学生综合素质的主要途径 自主探究就是由学生本人把要学的东西自己去发现或创造出来 因此,作为数学学习的组织者、引导者和合作者,教师必须给学生留有自主探究的思维空间 托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的欲望” 如果教师不先使学生情绪高昂,便急于传播知识,那么这种知识只能使人产生冷漠的态度,而没有欢欣鼓舞的心情,学习就会成为学生的负担 为此,教学中我们首先应该提倡让学生畅想畅言,精神上处于一种自由、放松的状态;创设宽松和谐平等民主的氛围,教师的语言、动作和神态要让学生感到可亲、可信,要能不断激发学生的求知欲,能激励学生不断克服学习中的困难,让学生产生兴奋和愉快感 其次,要给学生多提供独立思考的机会,让学生真正参与到学习过程中去,让学生想象驰骋、感情激荡、思路纵横,乃至异想天开,自然会碰撞思想的火花,引发探究的潜质 在课堂上教师可以大胆让学生进行自由讨论、自由交流,赞扬学生的一些独特看法,让学生真切地感受到学习是快乐的通过教师对问题的拓展提升,培养学生思维的灵活性通过类比、引申、推广,提出新的问题并加以解决,既能有效地巩固基础知识,又能培养学生的探索精神和创新能力,同时也能提高学生学习数学的自信心 例如高中数学有这样一题:例2 证明:(1)若f(x)=ax+b,则f=;(2)若f(x)=x2+ax+b ,则f在教学中,在对该习题的结论证明之后,我们给学生设计了如下问题:改变(2)中的条件,探求其结论,你能否将该命题推广课堂上给足够的时间,大胆让学生自己变更条件,探索其相应的结论或命题推广,然后请学生展示自己的探究成果学生1:若f(x)=ax2+bx+c(a0),则f;若f(x)=ax2+bx+c(a1),则f;若f(x)=ax(0学生4:若f(x)=logax(a0且a1),则f;学生5:若f(x)=x2+ax+b,则f教师:很好,同学们勇于探索,敢于创新的精神值得肯定通过集体讨论,学生对自己探索所得的结论进行再一次推证,达成共识 其中学生1、学生2、学生5正确,学生3与学生4不正确 你们能对学生3和学生4的结论进行修正吗?学生6:对生3的结论修改为若f(x)=ax(a0且a1)都有f学生7:对生4的结论修改为若f(x)=logax(a0且a1),对任意x1,x2(0,+),当a1时,有f;当0教师:太好了!比较指对数函数的结论,对我们有何启发?最后抓住时机,趁热打铁,发动全体学生总结规律,得出凸凹函数的性质:若定义在区间i上的函数y = f (x)是下凸函数,则对任意x1,x2i,有f若定义在区间i上的函数y=f(x)是上凸函数,则对任意的x1,x2i,有f这正是:有理想是件容易的事,实现理想就需要信心,更需要个人不懈的努力评析:我们学校有一位有多年高三教学经验的老教师,他及对教材习题的处理有着独特的方式 其中有一样让笔者体会最深的就是,每次他的题目都可以由原来的一道,讲着讲着加一下条件、改一下问题又变成了另外一道 一道题可以变出好几道题,而且学生对这些改变跟得很顺,学生学得轻松而且有效果 一道题引出几道题这样的变式训练,可以培养学生灵活的思维,掌握举一反三的能力 通过变式训练不仅有利于学生知识的迁移,沟通知识间的联系,形成熟练的技能技巧,改善学生的认知结构,而且培养了思维的广阔性和灵活性 当然,要根据课程内容,编好变式训练题,要防止机械模仿,要使练习的思维性具有适当的梯度,逐步增加创造性因素,要考虑有利于学生概括各种解题技能,或从不同的角度更换技能与方法,这样,通过长期训练,会使学生思维的灵活性大大提高对原有题型进行适当变式训练,有助于学生培养探究思想,但应遵循如下原则:1循序渐进,渗透联系;2让学生也能参与探索;3让学生能探索成功 让学生以自然、自动、自主的学习状态进入到探索学习中去,使学生在课堂学习知识、方法的同时,探究的意识也得到培养 当然,认识是有限的,实践也是有限的,通过变式训练来培养学生探究思想的养成,只是各种方法中的一种,为学生探究意识培养的还有待进一步的总结完善人类当前所处的时代是“信息爆炸”的高科技时代,知识瞬息万变,技术突飞猛进,客观世界发生着深刻的变化,这就要求教师首先要解放思想、更新观念、积极探索先进的教学方法 其次,在教学实践中,教师发挥主导作用,不仅要科学安排教学内容、科学选择教学方法,还要积极钻研教材、认真备课;不仅要重视语言形式、还要十分重视通过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智慧海洋考试题目及答案
- 计算机软件著作权代理合同
- DB65T 3772-2015 质押监管服务质量规范
- 中药炮制面试题库及答案
- 2025标准合同范本:全新版合同模板大全
- 管理学试题库及答案
- 中石油校园秋招试题及答案
- 2025年智能仓储机器人协同作业技术创新打造智能仓储物流新生态
- 中考数学考试题库及答案
- 中考试题及答案湖北物理
- 抗滑桩安全技术交底
- GB/T 5271.28-2001信息技术词汇第28部分:人工智能基本概念与专家系统
- 营业线施工单位“四员一长”施工安全知识培训考试题库
- 紧急采购申请单
- GA/T 1678-2019法庭科学鞋底磨损特征检验技术规范
- 《数字媒体专业认知实习》课程教学大纲
- 中西方婚礼文化差异毕业论文Word版
- 预备队员考核表
- 庆阳地区地下水供水水文地质条件评价
- 储能项目竣工报告
- 打印版唐能通
评论
0/150
提交评论