



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列组合的常见题型及其解法一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。例1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有种站法;第二步再让其余的5人站在其他5个位置上,有种站法,故站法共有:480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有种;第二步再让剩余的4个人(含甲)站在中间4个位置,有种,故站法共有:(种)例2、某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位。该台晚会节目演出顺序的编排方案共有多少种?24 例3、某单位7位员工在10月1日至10月7日值班,每天一人,若7位员工中的甲乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案有多少种? 1008二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。例4、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有种,然后女生内部再进行排列,有种,所以排法共有:(种)。三.合并元素法 例5、4名大学生到3工厂实习,每个工厂去至少一人,则不同的分配方案有多少种? 四. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。例6、7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有种,所以排法共有:(种)五. 定序问题用除法(缩倍法)对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。例7、由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?解:不考虑限制条件,组成的六位数有种,其中个位与十位上的数字一定,所以所求的六位数有:(个)例8、7人排队,A必须在B的后面,可以不相邻,那么不同的排法有多少种?例8、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是: (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。 思考:可以先让甲乙丙就坐吗?例9、古都西安的名胜古迹“兵马俑”的管理者,为了既方便游人与“兵马俑”拍照留念,又防止毁坏文物特意作了三尊以假乱真的兵马俑,固定在一起排成一排供人留念。现在一个4人旅游团来到这里并且想与兵马俑合影留念,请问当这4人与三尊兵马俑排成一排留影时,有多少种不同的站法?假设每两尊之间有足够的空隙站4人。 840六. 分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。例10、 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有种。七. 复杂问题用排除法对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。例11、 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种 B. 147种 C. 144种 D. 141种解:从10个点中任取4个点有种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:(种)。例12、4人接力,甲不跑第一棒,乙不跑最后一棒,共有多少不同的参赛顺序安排方法?例13、某通讯公司推出一组手机卡号码,卡号的前7为数字固定,后四位为0000到9999共10000个,公司规定,凡卡号后4为带有数字“4”或“7”的一律作为优惠卡,则这组号码中优惠卡的个数为多少个? 5904 八. 多元问题用分类法按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最后计算总数。例14、已知直线中的a,b,c是取自集合3,2,1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解:设倾斜角为,由为锐角,得,即a,b异号。(1)若c0,a,b各有3种取法,排除2个重复(,),故有:3327(条)。(2)若,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任意两条直线均不相同,故这样的直线有:33436(条)。从而符合要求的直线共有:73643(条)九. 排列、组合综合问题用先选后排的策略处理排列、组合综合性问题一般是先选元素,后排列。例15、将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:(种),第二步将这三组教师分派到3种中学任教有种方法。由分步计数原理得不同的分派方案共有:(种)。因此共有36种方案。十. 均匀分堆法例16、5人分到3所学校调研,要求每所学校至少一人,共有多少分配方案?150 例17、6本不同的书,平均分给甲乙丙三人,有多少种不同的分法?9十一.隔板模型法常用于解决整数分解型排列、组合的问题。例18、 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:(种)例19、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有种分法。将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为练习题:1 10个相同的球装5个盒中,每盒至少一有多少装法? 2 .求这个方程组的自然数解的组数 十二.环排问题线排策略例20、 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有(8-1)!种排法即! 一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有ex:6颗颜色不同的钻石,可穿成几种钻石圈 120十三.实际操作穷举法例21、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法解:从5个球中取出2个与盒子对号有种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有种 3号盒 4号盒 5号盒 对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十四.住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例22、七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得7种.十五.化归策略例23、25人排成55方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解:将这个问题退化成9人排成33方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新解读《HG-T 3089-2001燃油用O形橡胶密封圈材料》新解读
- 级配碎石底基层施工方案
- 专题梳理 动词不规则变化自测表 课件
- 低能负离子在锥形玻璃管中的传输行为研究
- 合作股份公司管理制度
- 物理中考一轮复习教案 第二十九讲 电功、电功率
- 仓储店线下活动策划方案
- 仓库拍卖活动方案
- 仓鼠食品活动方案
- 代理记账推广活动方案
- 【MOOC】政府审计学-南京审计大学 中国大学慕课MOOC答案
- 《基督教概论》课件
- 虚拟现实技术导论 习题答案或解题思路 梁晓辉
- 计算机应用技术专业调研报告(高职)
- 2024NEA水性气硅涂膏隔热保温墙体构造
- 山西省太原市(2024年-2025年小学四年级语文)部编版期末考试((上下)学期)试卷及答案
- BPC10完整版本.0技术培训V1.0
- 2024年新高考II卷高考历史试卷(真题+答案)
- 2024年黑龙江医疗卫生事业单位招聘(药学)备考试题库(含答案)
- 2024年新高考1卷数学真题试卷及答案
- 湖北省武汉市洪山区2023-2024学年七年级下学期期末考试语文试卷
评论
0/150
提交评论