




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正方形的教案设计 一、教学目的 1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算 2理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重点、难点 1教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系 2教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 三、例题的意图分析 本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考: 对角线相等的菱形是正方形吗?为什么? 对角线互相垂直的矩形是正方形吗?为什么? 对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件? 能说“四条边都相等的四边形是正方形”吗?为什么? 说“四个角相等的四边形是正方形”对吗? 四、课堂引入 1做一做:用一张长方形的纸片(如图所示)折出一个正方形 学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系问题:什么样的四边形是正方形? 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形 指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形(菱形) (2)有一个角是直角的平行四边形(矩形) 2【问题】正方形有什么性质? 由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形 所以,正方形具有矩形的性质,同时又具有菱形的性质 五、例习题分析 例1(教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形 已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图) 求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形 证明:四边形ABCD是正方形, AC=BD,ACBD, AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分) ABO、BCO、CDO、DAO都是等腰直角三角形, 并且ABOBCOCDODAO 例2(补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F 求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得 证明:四边形ABCD是正方形, AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等) 又DGAE,EAO+AEO=EDG+AEO=90 EAO=FDO AEODFO OE=OF 例3(补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点 求证:四边形MN是正方形 分析:由已知可以证出四边形MN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论 证明:PNl1,QMl1, PNQM,PNM=90 NM, 四边形MN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 2=90 又2=90,3 ABMDAN AM=DN同理AN=DP AM+AN=DN+DP 即MN=PN 四边形MN是正方形(有一组邻边相等的矩形是正方形) 六、随堂练习 1正方形的四条边_,四个角_,两条对角线_ 2下列说法是否正确,并说明理由 对角线相等的菱形是正方形;() 对角线互相垂直的矩形是正方形;() 对角线垂直且相等的四边形是正方形;() 四条边都相等的四边形是正方形;() 四个角相等的四边形是正方形() 1已知:如图,四边形ABCD为正方形,E、F分别 为CD、CB延长线上的点,且DEBF 求证:AFEAEF 4如图,E为正方形ABCD内一点,且EBC是等边三角形, 求EAD与ECD的度数 七、课后练习 1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF 求证:EAAF 2已知:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电商平台售后服务技术解决方案与应用报告
- 现场勘查基础知识培训课件
- 2025年开放银行生态构建中的金融科技与数字货币应用前景研究报告
- 新疆石河子二中2026届高三化学第一学期期中经典模拟试题含解析
- 广东省深圳市罗湖区罗湖外国语学校2026届化学高一上期中复习检测模拟试题含解析
- 甘肃省酒泉市瓜州县2026届高三上化学期中复习检测试题含解析
- 2025年秋季初级经济师考试 经济基础知识深度解析冲刺试卷
- 2025年土木工程师考试结构设计专项训练试卷 掌握结构设计要点
- 2025年注册会计师考试 会计科目冲刺模拟试卷及答案详解
- 2025年中学教师招聘考试(中学科目二)教育知识与能力重点难点试卷
- 2025办公室租赁合同简易范本下载
- 定向增发业务培训
- 2025年初级美容师理论知识复习资料试题及答案
- 《全球哮喘管理和预防策略(GINA 2025)》解读
- 餐饮店长转正汇报
- 2025年贵州省中考语文试卷(含答案与解析)
- 2025年广东省中考语文试卷(含答案解析)
- 2025年昆山校医考试题库
- 8-教育系统-安全生产治本攻坚三年行动工作方案及台账模板(2024-2026年)
- 2025年云南高考历史试卷解读及备考策略指导课件
- 2025至2030中国纤维素纳米纤维(CNF)行业项目调研及市场前景预测评估报告
评论
0/150
提交评论