已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Uniquenessoflowersemicontinuousviscosity solutionsfortheminimumtimeproblem OlivierAlvarez UPRESA SiteColbert Universit edeRouen Mont Saint AignanCedex France ShigeakiKoikeandIsaoNakayama DepartmentofMathematics SaitamaUniversity Shimo Okubo Urawa Saitama Japan Abstract Weobtaintheuniquenessoflowersemicontinuous lscforshort viscositysolutionsofthetransformedminimumtimeproblemassum ingthattheyconvergetozeroona reachable partofthetargetin appropriatedirections Wepresentacounter examplewhichshows thattheuniquenessdoesnotholdwithoutthisconvergenceassump tion ItwasshownbySoraviathattheuniquenessoflscviscositysolu tionshavinga subsolutionproperty onthetargetholds Inorder toverifythissubsolutionproperty weshowthattheDynamicPro grammingPrinciple DPPforshort holdsinsideforanylscviscosity solutions InordertoobtaintheDPP weprepareappropriateapproximate PDEsderivedthroughBarles inf convolutionanditsvariant Introduction Inthismanuscript wediscusstheminimumtimeproblemofdeterministic optimalcontrol whichhasbeenstudiedviaviscositysolutionapproachby manyauthors Asthe rstresult werefertoBardi Ba Seealso EJ BF BS and BSo whichalsotreatedtheminimumtimeproblemofdi erential games Inthoseworks theycharacterizedthevaluefunctionoftheminimumtime problemtoreachagiventargetastheuniqueviscositysolutionofa rst orderPDE However theyonlytreatedthecasewhentheresultingvalue functionsarecontinuoussincethoseuniquenessresultsimplythecontinuity ofsolutions Wenotethatthereoftenappeardiscontinuousvaluefunctions forpracticalminimumtimeproblems Thebreak throughtotreatsemicontinuoussolutionsfor rst orderPDEs wasdonebyBarronandJensen BJ Indeed theyintroducedanewdef initionofsemicontinuousviscositysolutionsforCauchyproblemswithcon vexHamiltonians whicharisewhenwedealwithoptimalcontrolproblems Undertheirsetting itwasshownin BJ thatthesemicontinuousvalue functionistheuniquesolutionoftheassociatedPDE Wenotethat ifwe restrictourselvestotreatcontinuousviscositysolutions thentheirde nition isequivalenttothatofthestandardone Afterwards Barles B discussedsemicontinuoussolutionsforstationary problemsutilizing Barles convolution Withthisidea Soravia S stud iedtheDirichlettypeproblems Moreprecisely heimposeda subsolution propertyontheboundaryofthetarget underwhichtheuniquenessoflscvis cositysolutionsforthe transformed minimumtimeproblemwasobtained Seealso K and BL forrelatedtopics Recently C arj aetal in CMP seealso C studiedlscviscositysolutionsoftheminimumtimeproblem assumingthattheyconvergetotheDirichletdatafrominside Fortheviscositysolutiontheoryof rst orderHamilton Jacobiequations werefertoanewbookbyBardiandCapuzzoDolcetta BC Ontheotherhand innon smoothanalysis lscsolutionshavebeenstud iedinoptimalcontroltheory Forthe rstresult werefertoFrankowska F Morerecently WolenskiandZhuang WZ haveprovedtheuniquenessoflsc solutionsoftheminimumtimeproblemassumingthesubsolutionproperty onthetargetasin S whichthevaluefunctionsatis es Wenotethattheir de nitionofsolutionsisslightlydi erentfromthatofviscositysolutions It isworthmentioningthat in WZ toshowtheuniqueness theycompared theotherlscsolution ifitexists withthevaluefunctionbytheso called invariancetheorywhile intheliteratureoftheviscositysolutiontheory wehaveshownitviacomparisonprincipleforaboundaryvalueproblemof PDEs Ouraimhereistoobtainauniquenessresultwithoutassumingthesub solutionpropertyonthetarget Infact wewillderivesuchapropertyfrom thede nitionofsolutionsundersomecontinuityassumptionona reachable partoftheboundary Then wewillbeabletoapplySoravia sargumentin S togettheuniqueness Moreover wewillmentionthatourcontinuityconditionisequivalent toSoravia sone Infact toshowthattheSoravia sconditionimpliesthe continuityone wegiveadirectproofthoughwecanproveitusingthe uniquenessofsolutions Inanexample wewillseethatthiscontinuityassumptionisnecessary toobtaintheuniquenessresult Here weshallrecalltheoriginalminimumtimeproblem Considerthe stateequationassociatedwithcontrols A f Ameasurableg whereAisacompactsetinR m forsomem N Forx R n dX dt t g X t t fort X x whereg R n A R n isagivenfunctionandx R n is xed Weshalldenote underappropriatehypotheses byX x the unique solutionof WewillalsodenotebyX x theuniquesolutionfor avector eld W R n R n dX dt t X t fort X x Forsimplicity weshallsupposethat A T R n iscompact Withthesenotations werecallthevaluefunctionoftheminimumtime problem V x inf A T x whereT x infft jX t x Tg SinceV x mightbein nityinasubregionof R n nT wewillhave tostudythefreeboundaryproblem max a A f hg x a DV x i g inR fx jV x g SincewecannotexpectthatRisopeningeneralaswewillsee wemeet somedi cultyifwetreat directly Therefore inthispaper follow ingthepreviousworks weshallconsiderthetransformedvaluefunctionby Kruzkovtransformation u x inf A e T x Then wecanexpectutobeasolutionof u x max a A f hg x a Du x ig in Thus onceweverifythatuistheuniquesolutionof wewillbeableto derivethereachablesetbyR fx ju x g Thispaperisorganizedasfollows Section isdevotedtogiveourde nitionoftheminimumtimeproblemandtheDPPwhichimpliesthesubso lutionproperty WepresentouruniquenessresultandexamplesinSection Also wediscussabouttheequivalenceofboundaryconditionsinSection Inthe nalsection weprovetheDPPinSection Acknowledgement WewishtothankProfessorE N Barronforin formingusthemanuscript WZ WealsowishtothankProfessorM Bardi forlettingusknowaninterestingexample seeExample below dueto P Soravia We nallywishtothanktherefereesfortheirsuggestionstothe rst draft ThesecondauthorSKwassupportedbyGrant in AidforScienti cRe searchNo andNo theMinistryofEducation Science andCultureinJapan DynamicProgrammingPrinciple Ourhypothesisontheregularityofgivenfunctionsisasfollows A g C R n A R n andsup a A kg a k W R n R n Forlaterconvenience weshallconsiderthefollowinggeneral rst order PDEinaset R n u x max a A f hg x a Du x i f x a g in wheref R n A Risagivencontinuousfunction Forsimplicity weshallusethenotation H x r p r max a A f hg x a pi f x a g Wewillsupposethefollowingreguralityongivenfunctionsin A g C R n A R n f C R n A R and sup a A n kg a k W R n R n kf a k W R n R o Following BJ also B wepresentourde nitionofsolutionsof De nition Forafunctionu R wecallitasubsolution resp supersolution of ifuislscin and H x u x p resp forx andp D u x whereD u x denotesthestandardsubdi erentialofuatx D u x fp R n ju y u x hp y xi o jy xj asy xg Forafunctionu R wealsocallitasolutionof ifuisbotha sub andsupersolutionof Wecharacterizethesetofreachablecontrolsinthefollowingway For x T A x a A Thereexistst suchthat X s x g a fors t Weshallderivethe subsolution propertieson Tforsolutionsthrough thefollowingpropositions The rstoneis Lemma Assumethat A holds Letubeasolutionof Assumealsothatu onT Then forx Tandp D u x wehave hg x a pi provideda AnA x Proof Choose C suchthatu attainsitsminimumoverR n at x T u x x andD x p SetX X x g a Sincea AnA x thereexistsft k g k suchthatlim k t k and X t k T k Hence X t k x u X t k Therefore dividingt k andthen sendingk weconcludetheassertion QED Forsimplicity weshallsupposethat A isopen and iscompact For wede neanopensubset fx jdist x g Also foranopensubsetO andx O weusethenotation x O infft jX t x Og WepresenttheDPPfor whoseproofwillbegiveninthe nalsection sinceitisrathercomplicated Theorem cf L Assumethat A and A hold Letu Rbeaboundedsolutionof H x u Du in Then for andx u x inf A Z x e s f X s x s ds e x u X x x Corollary Assumethat A and A hold Fixx T Let u Rbeaboundedsolutionof u x max a A f hg x a Du x ig in Assumealsothatu onTand foranyx Tanda A x liminf s t u X s x t a u x holds wherex t X t x g a fort Then u x hg x a pi forp D u x ProofofCorollary Letx T p D u x anda A x inthe hypothesis Wethensetx t X t x g a forsmallt Choose C suchthatu x x u inR n andD x p Fixsmallt andchoose t suchthatx t for t ByTheorem wehave u x t e x t a e x t a u X x t a x t a whereastandsfortheconstantcontrol a Wenotethatlim x t a t Wealsonotethattheuniquenessofsolutionsof yieldsX x t a x t a x t x t a Takethelimitin mum as togetherwiththeseintheabove toget x t e t x u x t e t u x e t Dividingt andthen sendingt intheabove weconcludetheproof QED Mainresults Inordertoobtaintheuniquenessresult wewillsupposethefollowing continuityassumption Lettingubealscfunctionin wewillsuppose that foranyx Tanda A x A liminf s t u X s x t a forsmallt wherex t X t x g a NoticethatwedonotsupposethatA x inthishypothesis Ouruniquenessresultfor isasfollows Theorem Assumethat A and A hold Letuandv R n R beboundedsolutionsof andsatisfy A Assumealsothatu v onT Then u vinR n ProofofTheorem InviewofLemma andCorollary wesee that u x max a A f hg x a pig forx Tandp D u x ThispropertyenablesustoapplySoravia sresultTheorem in S to concludetheproof QED Thankstotheabovetheorem itiseasytoshowthattherelaxedvalue functionistheuniqueboundedviscositysolutionof satisfying A Tothisend letusintroducetheuniquesolution X x oftheassociated stateequation X t x Z t Z A g X s a d s a ds wheres s M A ismeasurable Here M A isthesetof allRadonprobabilitymeasuresonA Weshalldenoteby Athesetofsuch maps Therelaxedvaluefunctionisasfollows V x inf A e T x where T x infft j X t x Tg Theorem Assumethat A and A hold Then Vistheunique boundedsolutionof satisfying A ProofofTheorem Followingtheargumentin BJ weseethat Vis lscandsatis es inoursensein Tocheckthat A holdsfor V weobservethat forx Tanda A x V X s X t x g a a e t s Hence since V x sendings t weobtain A for V Weremark herethatthenonnegativityof Vindeedyields lim s t V X s X t x g a a Therefore Theorem immediatelyimpliestheassertion QED Remark Ifwehavealscsolutionuof satisfying then u x V x inR n Hence A holdstrueforubySoravia sargumentin S since Valsosatis es Thus throughtheabovetheorem thecondition isequivalentto A See WZ forthesameargument Now weshallshowthatcondition impliesabitstrongerassertion than A Theorem Assumethat A and A hold Letu be aboundedsubsolutionof satisfying andu onT Then for eachx T a A x andsmallt wehave lim s t u X s X t x g a a ProofofTheorem Fixx Tanda A x Asusual wemay supposex andg a e n wheree n Furthermore wemaysupposethatg a e n neartheorigin Indeed settingv y v y y n u X y n y y n g a wehave v y v y n y u X hg X a Du X i De neQ h fx x x n j x n h jx j gforsmallh and x x n x n jx j Sincemin Q h u u the minimumpoint x Q h canbeattainedat x x h Indeed otherwise we have possibilities Incasewhen x n weimmediatelysee u x u Incasewhenj x j holds wealsohave u x u Incasewhen x x x n Q h n thereis suchthat u x e n u x Intheabovethreecases wegetacontradictiontothechoiceofthe minimumpoint x Theremainingcaseisasfollows Incasewhen x Q h thede nitionofsolutionsyields u x x n x whichisacontradiction Therefore taking alongasubsequenceifnecessarily bythelower semicontituityofu we ndu h h whichconcludestheasser tion QED Remark Recently P Soraviakindlyletusknowthatwecaneasilyobtain theaboveassertionusingtheoptimalityprinciplein S Now wegiveanexampleduetoP Soravia Example ForT considerthePDE u u x in RnT Itiseasytoshowthattheunique continuous solutionisgivenby V x e jxj forjxj forjxj Ontheotherhand weobservethatthefollowingfunctionsatis es in V x e x forx forjxj forx Noticethat Vdoesnotsatisfy A atx Thus thisexampleindicates thatitisnecessaryfortheuniquenessresulttosuppose A Wealsonotethat byTheorem Vistheuniquelscsolutionof u u x in Wenextgiveanexample inwhichthereachablesetisnotopenandthe discontinuityappearsin Example ForT fx x R j x g u max u x a x u x in R nT where a x forx x forx forx WeeasilyverifythatthereachablesetR fx jV x gisgiven by f x x j x g Moreover itisnothardtocalculatethevaluefunction V x x forx orx e jx j forx e jx j x forx x e jx j forx NoticethatthediscontinuityofVoccursat x ProofofTheorem ThebasicideaofourproofwasobtainedbyP L Lionsin L forsecond orderPDEs Wealsoreferto EI and BSo But intheirargument we needsomeregularityofsolutions Hence wewilladaptsomeapproximation techniques Letubeasolutionof Weshallextendu withthesamenotation tothewholespacebysettingu x forx We xanyT We rstapproximateubylocallyLipschitzcontinuousfunctions For and x t R n T wede ne u x t inf y R n u y e t jx yj and u x t inf y R n u y e t jx yj Here we x max a A kDg a k Noticethatthe rstoneis Barles convolutionbutthesecondonehasanoppositesignofthepoweron theexponential Itisimmediatetoseethatu u inR n T Wecaneasilyshowtheproperties jx yj e t kuk ifu x t u y e t jx yj jx yj e t kuk ifu x t u y e t jx yj Inviewofthesefacts wede netheconstant c c T e T kuk Weclaimthatthefollowingpropertieshold ForsomeC andC independentof and u x t q max a A f hg x a pi f x a g C e t for x t c T and p q D u x t and u x t q max a A f hg x a pi f x a g C e t for x t c T and p q D u x t Here D u x t D u x t Wenotethat holdsinalargersetthan c butthisissu cientto concludetheproof Althoughitisnothardtoshow and bytheargumentin B togetherwith wegiveabriefproofforthereader sconvenience Since canbeobtainedeasilybyremarkingthesignofthepoweron e weshallonlyshow Seealsoourprooffor below LetusrecalltheBarron Jensenlemma whichwillbeneededalsofor checkingthesignofqin Lemma See BJ or K Fix x t R n T and p q D u x t Forany thereexist x k t k R n T p k q k D u x k t k fork f n g withsomen N x t R n T C andf k g n k suchthat i lim jx k x j ii lim x t k x t k n iii jp k j C k n iv n X k k v lim n X k k p k q k p q For x t c T and p q D u x t in weshallchoose x k t k etc inLemma Sincewemaysupposex k c forsmall inviewof wecan choosey k suchthat u x k t k u y k e t k jx k y k j Sincep k D u y k thede nitionyields u y k max a A f hg y k a p k i f y k a g Notingp k e t k x k y k wecalculateinthefollowingway u y k max a A f hg x k a p k i f y k a g max a A kDg a k e t k jx k y k j u y k max a A f hg x a p k i f x k a g max a A kDg a k e t k jx k y k j jx k x jjp k j max a A kDf a k jx k y k j Sincewemayalsosuppose e t k jx k y k j q k forsmall by and iii of wecan ndC suchthat u x k t k q k max a A f hg x a p k i f x k a g C max a A kDg a k jx k x j C e t k max a A kDg a k e t k jx k y k j Fromthechoiceof weseethatthelasttermintherighthandsideof theaboveisnonnegative Takingtheconvexcombinationwithf k g n k andthen sending with i ii iv v of intheabove wehave u x t q max a A f hg x a pi f x a g C e t Now for wechoose C R n suchthat inR n in and in c Wesetthefunctions g x a x g x a f x t a x f x a C e t x u x t f x t a x f x a C e t x u x t Wethenconsidertheproblems For x t p q R n T R n R u u t H x t Du and u u t H x t Du where H x t p max a A f hg x a pi f x t a g H x t p max a A f hg x a pi f x t a g Inwhatfollows wesupposethat c Weclaimthatu andu respectively arethestandardviscositysubsolu tionandsupersolutionofu u t H andu u t H inR n T For x t R n T u x t q H x t p provided p q D u x t and u x t q H x t p provided p q D u x t Indeed itisimmediatetocheckthatu andu respectively satisfythat for x t R n T u x t x q H x t p provided p q D u x t and u x t x q H x t p provided p q D u x t Here wehaveusedthefact x forx c We rstshow Since p q D u x t fromthede nition wehaveq e t jx yj forsomey Hence weconcludeourclaimbecause Thus for itissu centtoshowthatq provided p q D u x t Thisisnotstraightforwardunlikethatfor However inviewof iv and v ofLemma qcanbeapproximatedby P n k k q k as for p k q k D u x k t k withappropriate x k t k Hence wecanseethatq k e t k jx k yj forsomey Therefore q Now weshallgivethevaluefunctionsu andu respectively for and withinitialconditionu andu u x t inf A Z t e s f X s x t s s ds e t u X t x and u x t inf A Z t e s f X s x t s s ds e t u X t x Sincef x t f x t C e t C e t andu u thereexists C suchthat u x t u x t C e t inR n T Wealsoremarkthatu andu areboundedandcontinuous Hence thestandardcomparisonprincipleyieldsthat u x t u x t andu x t u x t inR n T Fixx andchoose sothatx Then theDPPforu at x T with and impliesthat u x T inf A e x T u X x T x T x Z x T e s f X s x s ds inf A e x T u X x T x T x Z x T e s f X s x s ds C e T u x T C e T Wenotethat foreach A and imply u X x T x lim u X x T x T x lim u X x T x T x Therefore sending with in wehave u x inf A e x T u X x T x Z x T e s f X s x s ds Finally sendingT weconcludetheproof QED References Ba M Bardi Aboundaryvalueproblemfortheminimumtime function SIAMJ Control BC M Bardi I CapuzzoDolcetta OptimalControland ViscositySolutionsofHamilton Jacobi BellmanEquations Birkh auser BF M Bardi M Falcone Anapproximationschemeforthe minimumtimefunction SIAMJ ControlOptim BS M Bardi V Staicu TheBellmanequationfortime optimalcontrolofnoncontrollablenonlinearsystems Acta ApplicandaMathematicae BSo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030精准医疗技术临床应用现状及投资机会评估报告
- 2025-2030空天地海一体化通信网络架构演进报告
- 2025年下半年福建泉州市交通综合行政执法支队研究生招考5人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年福建中国邮政集团限公司莆田市分公司春季招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年福州市委党校招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年番禺区大龙街流动人员和出租屋管理服务中心招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年珠海市委员会招考工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年湖南省湘西自治州引进高层次急需紧缺人才(长沙站)137人重点基础提升(共500题)附带答案详解
- 2025年大学《传播学》专业题库- 社交网络与传播效率
- 科幻创作大赛试题及答案
- 2025广东东莞寮步镇人民政府招聘编外聘用人员14人备考参考题库及答案解析
- 船体火工安全素养强化考核试卷含答案
- 人教版二年级数学上册期中测试卷(带答案)
- 2025年初中级审计师考试题及答案解析
- 实验室仪器设备培训考试题及答案
- 云南民族大学附属高级中学2026届高三联考卷(二)化学(含答案)
- 安全知识培训竞赛课件
- 会计师事务所年报审计方案模板
- 2025-2030中国畜牧行业发展分析及投资前景与战略规划研究报告
- 2025届北汽集团全球校园招聘正式开启(1000+岗位)笔试参考题库附带答案详解
- 沼气项目安全操作规程及宣传手册
评论
0/150
提交评论