




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、等差数列1、等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。用递推公式表示为或。2、等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。3、等差中项的概念:定义:如果,成等差数列,那么叫做与的等差中项。其中 ,成等差数列。4、等差数列的前和的求和公式:。5、等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是, 如:,;,;(3)在等差数列中,对任意,;(4)在等差数列中,若,且,则;说明:设数列是等差数列,且公差为,()若项数为偶数,设共有项,则奇偶; ;()若项数为奇数,设共有项,则偶奇;。6、数列最值(1),时,有最大值;,时,有最小值;(2)最值的求法:若已知,可用二次函数最值的求法();若已知,则最值时的值()可如下确定或。二、等比数列1等比数列定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母表示,即:数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,。(注意:“从第二项起”、“常数”、等比数列的公比和项都不为零)2等比数列通项公式为:。说明:(1)由等比数列的通项公式可以知道:当公比时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若为等比数列,则。3等比中项如果在中间插入一个数,使成等比数列,那么叫做的等比中项(两个符号相同的非零实数,都有两个等比中项)。4等比数列前n项和公式一般地,设等比数列的前n项和是,当时, 或;当q=1时,(错位相减法)。说明:(1)和各已知三个可求第四个;(2)注意求和公式中是,通项公式中是不要混淆;(3)应用求和公式时,必要时应讨论的情况。5等比数列的性质等比数列任意两项间的关系:如果是等比数列的第项,是等差数列的第项,且,公比为,则有;对于等比数列,若,则,也就是:,如图所示:。若数列是等比数列,是其前n项的和,那么,成等比数列。如下图所示:三 、数列前n项和1数列求通项与和(1)数列前n项和Sn与通项an的关系式:an= 。(2)求通项常用方法作新数列法。作等差数列与等比数列;累差叠加法。最基本的形式是:an=(anan1)+(an1+an2)+(a2a1)+a1;归纳、猜想法。(3)数列前n项和重要公式:1+2+n=n(n+1);12+22+n2=n(n+1)(2n+1);13+23+n3=(1+2+n)2=n2(n+1)2;等差数列中,Sm+n=Sm+Sn+mnd;等比数列中,Sm+n=Sn+qnSm=Sm+qmSn;裂项求和将数列的通项分成两个式子的代数和,即an=f(n+1)f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:、=、nn!=(n+1)!n!、Cn1r1=CnrCn1r、=等。错项相消法对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错项相消法。, 其中是等差数列, 是等比数列,记,则,并项求和把数列的某些项放在一起先求和,然后再求Sn。数列求通项及和的方法多种多样,要视具体情形选用合适方法。通项分解法:2递归数列数列的连续若干项满足的等量关系an+k=f(an+k1,an+k2,an)称为数列的递归关系。由递归关系及k个初始值可以确定的一个数列叫做递归数列。如由an+1=2an+1,及a1=1,确定的数列即为递归数列。递归数列的通项的求法一般说来有以下几种:(1)归纳、猜想、数学归纳法证明。(2)迭代法。(3)代换法。包括代数代换,对数代数,三角代数。(4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn= Sn= Sn=当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。4、等比数列的通项公式: an= a1qn-1an= akqn-k(其中a1为首项、ak为已知的第k项,an0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q1时,Sn=三、高中数学中有关等差、等比数列的结论1、等差数列an的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、仍为等差数列。2、等差数列an中,若m+n=p+q,则3、等比数列an中,若m+n=p+q,则4、等比数列an的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、仍为等比数列。5、两个等差数列an与bn的和差的数列an+bn、an-bn仍为等差数列。6、两个等比数列an与bn的积、商、倒数组成的数列anbn、仍为等比数列。7、等差数列an的任意等距离的项构成的数列仍为等差数列。8、等比数列an的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、an为等差数列,则(c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 摩托部件基础知识培训课件
- 2025年河南省商丘市考研专业综合预测试题含答案
- 2024下半年漳州市漳浦县事业单位招聘考试《综合基础知识》试题(附答案)
- 摄影鉴赏课件
- 摄影技巧基础知识培训课件
- 微波技术基础试题及答案
- 2025版配套人民币借款合同
- 2025年春季部编版初中数学教学设计八年级下册第1课时 一次函数与一元一次方程、不等式
- 摄像头设置课件
- 2025合作伙伴:委托繁育品种合同大全
- 园林绿化工(技师) 技能鉴定理论考试题及答案
- 活性炭改扩建项目环评报告书
- 神经病学-第十章-脑血管病的介入诊疗
- 贵州省大学生志愿服务西部计划志愿者招募笔试题库(含答案)
- 初中生物人教版教材解读
- 北京水务投资集团有限公司招聘笔试题库2024
- 丧葬服务行业的行业伦理与规范
- 完整版交管12123驾照学法减分复习真题A4版可打印
- PiCCO-监测技术操作管理
- ISO 22320-2018安全与韧性 应急管理 突发事件管理指南(中文版)
- 融资租赁租金及IRR收益测算表
评论
0/150
提交评论