刘渊4.23学生版.doc_第1页
刘渊4.23学生版.doc_第2页
刘渊4.23学生版.doc_第3页
刘渊4.23学生版.doc_第4页
刘渊4.23学生版.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

礼德教育个性化辅导教案ggggggggggggangganggang纲教师:吴涛 学生:刘渊时间: 2012年 4月23 日14:00-16:00段 第 4 次课一、授课目的与考点分析:通过本节的学习要理解椭圆的定义,掌握椭圆方程的标准方程,能灵活应用椭圆的几何性质解决相关问题,在具体问题的解决过程中继续加深对坐标思想的理解,感悟函数与方程思想以及分类与整合、转化与化归等重要的数学思想重点是掌握椭圆的定义、标准方程和椭圆的简单几何性质;难点是椭圆标准方程的推导与化简,坐标法的应用圆锥曲线是中学教学的核心内容,又是学习高等数学的基础知识,所以它是高考的重点内容,在高考试卷中一般会有一道有关圆锥曲线的解答题,并且椭圆、双曲线、抛物线出现的几率大体相当2、 授课内容提纲: 1. 椭圆的定义、标准方程、 2. 椭圆的简单几何性质及应用等知识 三、学生对于本次课的评价: 特别满意 满意 一般 差我想对老师说:四、教师评定:1、 学生上次作业评价: 好 较好 一般 差2、 学生本次上课情况评价: 好 较好 一般 差我想对学生说:学生签字: 教务处: 礼德教育个性化辅导教案学生姓名 刘渊年级高三授课日期4.23教师 吴涛学科数学上课时段14:00-16:00教学内容1椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2标准方程:, ()3椭圆的性质:由椭圆方程() (1)范围: ,,椭圆落在组成的矩形中(2)对称性:图象关于轴对称图象关于轴对称图象关于原点对称 原点叫椭圆的对称中心,简称中心轴、轴叫椭圆的对称轴从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: ,加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴长分别为 分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点 (4)离心率: 椭圆焦距与长轴长之比 椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例 椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例 4.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式5椭圆的准线方程:椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 对于,左准线;右准线对于,下准线;上准线焦点到准线的距离(焦参数)椭圆的通径长:.焦点三角形的面积为:二、讲解新课: 椭圆的焦半径公式:设是椭圆的一点,和分别是点与点,的距离.那么(左焦半径),(右焦半径),其中是离心率推导方法一: ,即(左焦半径),(右焦半径)推导方法二:,同理有焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点)注意:焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加三、讲解范例例1 如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km)解:建立如图所示直角坐标系,使点A、B、在轴上,则 |OA|O|A|63714396810|OB|O|B|637123848755解得7782.5,972.5.卫星运行的轨道方程为 例2 椭圆,其上一点P(3,)到两焦点的距离分别是6.5和3.5,求椭圆方程解:由椭圆的焦半径公式,得,解得,从而有 所求椭圆方程为 课堂练习:1.椭圆上不同三点与焦点F(4,0)的距离成等差数列,求证2设P是以0为中心的椭圆上任意一点,为右焦点,求证:以线段为直径的圆与此椭圆长轴为直径的圆内切3已知椭圆的一个焦点为(0,2)求的值4.已知椭圆的中心在原点,且经过点,求椭圆的标准方程5. 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程7. 已知方程表示椭圆,求的取值范围8. 已知圆,从这个圆上任意一点向轴作垂线段,求线段中点的轨迹9.椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A4B2 C8 D10. 已知是直线被椭圆所截得的线段的中点,求直线的方程课后作业另外:椭圆的通径长:.焦点三角形的面积为:(一)考查椭圆的概念如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则 (二)图 (三)图(二)基本量求解已知、是椭圆(0)的两个焦点,为椭圆上一点,且若的面积为9,则=_(三)突出几何性质的考查 如图,已知圆方程为,点的坐标为,为圆上任意一点,线段的垂直平分线交于点,则点的轨迹方程为( )A B C D(四)求参数范围问题 已知点为椭圆的右焦点,点在椭圆W上,直线PF交椭圆W于点Q,且,若,求实数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论