双因素方差分析.doc_第1页
双因素方差分析.doc_第2页
双因素方差分析.doc_第3页
双因素方差分析.doc_第4页
双因素方差分析.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

双因素方差分析一、双因素方差分析的含义和类型(一)双因素方差分析的含义和内容在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。例如上一节中饮料销售量的例子,除了关心饮料颜色之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因,采用不同的推销策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位,在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解,接受该产品。在方差分析中,若把饮料的颜色看作影响销售量的因素A,饮料的销售地区看作影响因素B。同时对因素A和因素B进行分析,就称为双因素方差分析。双因素方差分析的内容包括:对影响因素进行检验,究竟一个因素在起作用,还是 两个因素都起作用,或是两个因素的影响都不显著。双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性。(二)双因素方差分析的类型双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。有交互作用的双因素方差分析已超出本书的范围,这里介绍无交互作用的双因素方差分析。1.无交互作用的双因素方差分析。无交互作用的双因素方差分析是假定因素A和因素B的效应之间是相互独立的,不存在相互关系;2.有交互作用的双因素方差分析。有交互作用的双因素方差分析是假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种颜色有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景,否则,就是无交互作用的背景。二、数据结构方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。 下面用一个简单的例子来说明方差分析的基本思想: 如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下: 患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11 健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87 问该地克山病患者与健康人的血磷值是否不同? 从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源: 组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等; 组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。 而且:SS总=SS组间+SS组内 v总=v组间+v组内 如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。因素A位于列的位置,共有r个水平, 表示第j种水平的样本平均数;因素B位于行的位置,共有k个水平, 表示第I种水平的样本平均数。为样本总平均数样本容量为 n = r x k 。每一个观察值xij是由因素A的r个水平和因素B的k个水平所组成的总体中抽取的样本容量为1的独立随机样本。在进行双因素方差分析时,假定在个总体中,每一个总体都服从正态分布,而且有相同的方差。三、离差平方和的分解与单因素方差分析相类似,进行双因素方差分析时也需要将总离差平方和SST进行分解。但不同的是,这里需要将SST分解成三个组成部分:即SSA:反映因素A的组间差异SSB:反映因素B的组间差异SSE:随机误差的离散状况它们的计算公式分别为:(1)(2)(3)SSE = SST SSA SSB (4)双因素方差分析表如下:例题:某商品有五种不同的包装方式,在五个不同地区销售。现从每个地区随机抽取一个规模相同的超级市场,得到该商品不同包装的销售资料如表7-9所示。试问,包装方式和销售地区对该商品销售量是否有显著影响(= 0.05)?解:从上表可看出,设包装方式为因素A,销售地区为因素B。如果五种包装方式的销售均值相等,则表明不同的包装方式在销售上没有差别;同理,如果五个地区销售均值相等,则表明不同地区在销售上没有影响。所以,方差分析的过程为:(一) 建立假设:用A、B分别来表示两个因素。因素A位于列的位置,有个水平;因素B位于行的位置,有个水平,因素A和因素B共有种不同的水平组合。我们对每一种水平组合进行一次试验,其试验结果用来表示。并且假定这个观察值均服从正态分布,且有相同的方差。全部试验结果如下表:表8-9 双因素方差分析数据表 因素A()因素B(),表示第行试验数值的平均数。 (5),表示第列试验数值的平均数。( 6 ),表示个试验数值的平均数。 (7)对上表中的数据可以这样来理解,假设A、B两因素对试验结果没有影响,那么个观察值就是来自同一正态总体的同一个样本的随机变量,各个之间的变异,纯是随机因素所产生的随机误差,从而各列间的平均数应是相等的,且等于总体平均数。各行间的平均数也应相等,也等于总体平均数。如有差异,也是随机误差。假如两个因素对试验结果有影响,则表现在各列平均数之间和各行平均数之间就有明显的差异,这种差异除随机误差之外,还包含了系统偏差,这时就不能认为各个观察值是来自同一正态总体的样本随机变量了。所以,我们可以做如下假设:对因素A,因素A各水平之间无差别对因素B,因素B各水平之间无差别通过方差分析,就能对统计假设是否可信作出一定程度的判断。对于此题:对因素A:包装方式之间无差别不全等 包装方式之间有差别对因素B:地区之间无差异不全等 地区之间有差异(二)计算F值:1.计算各种均值(1)因素A的列均值分别为: (2)因素B的行均值分别为 (3)总均值 2.计算各种离差平方和于是,由公式(1)(4)有:= SSE = SST-SSA-SSB= 880.96-335.36-199.36 = 346.243.计算各种均方差 4.计算F值 若使用计算机,Excel的输出结果如下:双因素方差分析表差异源 SS df MSFP-value Fcrit行(因素B) 199.36 4 49.84 2.303142 0.103195 3.006917列(因素A) 335.36 4 83.84 3.874307 0.021886 3.006917误差346.24 162

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论