湿度知识湿度检测方面的专业基本知识.pdf_第1页
湿度知识湿度检测方面的专业基本知识.pdf_第2页
湿度知识湿度检测方面的专业基本知识.pdf_第3页
湿度知识湿度检测方面的专业基本知识.pdf_第4页
湿度知识湿度检测方面的专业基本知识.pdf_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

干湿球 1 概述 干湿球湿度计由两支规格完全相同的温度计组成 一支称为干球温度计 其温泡暴露在空气中 用以测量环境温度 另一支称为 湿球温度计 其温泡用特制的纱布包裹起来 并设法使纱布保持湿润 纱布中的水分不断向周围 空气中蒸发并带走热量 使湿球温度 下降 水分蒸发速率与周围空气含水量有关 空气湿度越低 水分蒸发速率越快 导致湿球温度 越低 可见 空气湿度与干湿球温差 之间存在某种函数关系 干湿球湿度计就是利用这一现象 通过测量干球温度和湿球温度来确定 空气湿度的 干湿球湿度计 干湿球湿度计的研究主要集中在两方面 一是对干湿球理论的研究 二是对温度测量的研究 干湿球理论研究的核心任务是确定准确的干湿球系数 A 以提高方法的可靠性和重复性 在 温度测量问题上 人们使用了包括 膨胀原理的温度计 热电偶 热电阻及热敏电阻等在内的当代几乎所有的测温技术 以提高测量 精度 并满足各种场合的测量需要 干湿球湿度计具有坚实的理论基础 在测湿法中一直占有重要地位 精密的阿斯曼通风干湿表长 期以来作为检定其它湿度计的二等标 准 然而 干湿球测湿法基本上是一种间接测量方法 在理论和实践上都存在一些问题 另外通 风干湿表用于零度以下时不仅操作十 分不便 其准确度也大大下降 这是干湿球测湿法所固有的局限性 2 干湿球湿度计 干湿球湿度计的种类很多 原则上任何两支规格完全相同的温度计都可以组成干湿球湿度计 由于所采用的测温方法不同 干湿 球湿度计的形式有很多种 干湿球湿度计的技术关键是测温问题 影响湿球温度的因素是多方面 的 但仅就其结构而言 主要应力求 减小由温度计主体传导给温泡的热量 这个问题对于热容量很小的电测温元件尤为敏感 通常通 过加长上水套或放置能大大减小热传 导的棉防护套的办法来解决 主要类型 玻璃水银温度计干湿表 使用电测温元件的干湿球湿度计 热电偶干湿球湿度 计 热敏电阻干湿仪 用铂电阻元件 测温的干湿仪 Gregory 平衡温度干湿表 世界气象组织标准通风干湿表 绝热通风干湿表 3 影响干湿表湿度测量的因素 1 温度测量误差的影响 2 干湿球系数 A 不准确造成的误差 3 通风速度对于干湿球系数 A 的影响 4 湿球温度 tw 的影响 5 湿球的尺寸和形状 6 湿球的响应速度 7 湿球的污染 8 辐射造成的误差 9 上水套的影响 4 干湿表系数 A 值的选取 在计算过程中需要注意的是干湿表系数 A 值的选取 在湿球球部 柱状 通风速度为 3 5m s 条件下 当湿球未结冰时 A 0 667 10 3 1 当湿球结冰时 A 0 588 10 3 1 程序在使用时需 要使用者输入该值 不同条件下 A 值的选取是不一样的 下面给出了部分工况下系数 A 值 仅供在具体应用时做 一参考 如下表 Ai 10 3 1 干湿表型号 湿球未结冰 湿球结冰 通风干湿表 通风速度 2 5m s 0 662 0 584 球状干湿表 自然通风 0 857 0 756 柱状干湿表 自然通风 0 815 0 719 球状干湿表 自然通风速度 0 8m s 0 7947 0 7947 干湿表系数 在低速和自然通风条件下 影响 A 值的主要因素是通风速度 这时干湿球表 A 的计算的一 个经验公式 A 0 00001 65 6 75 v v 空气流过湿球四周的速度 m s 在实际工作中 我们可以根据现场和精度要求来选取不同的 A 值 露点仪 露点法是一种古老的湿度测量方法 从经典的 Regnault 露点仪算起 它也有一百多年的 历史了 随着科学技术的发展 露点技术臻于完善 现代的光电露点仪采用热电制冷 并且可以 自动补偿零点和连续跟踪测量露点 带有微处理器的露点仪还可以把露点温度同时转换为相对湿 度等测量单位 高精度露点仪在一般湿度范围的测量准确度可达 1 露点温度 露点仪建立在可靠的理论基础之上 具有准确度高 测量范围宽的特点 其准确度仅次 于重量法湿度计 因此 它不仅是一种工作仪器 而且也是长期以来普遍采用的标准仪器 露点 仪广泛用于工业过程和实验室的湿度测量与控制 以及气象学中的探空测量等 在现代湿度测量 技术中占有相当重要的位置 一 露点湿度计的原理 露点湿度计的原理可以通过一个简单的实验来说明 若将一个光洁的金属表面放到相对 湿度低于 100 的空气中并使之冷却 当温度降到某一数值时 靠近该表面的相对湿度达到 100 这时将有露在表面上形成 因为在这个温度下空气中的水汽达到了饱和 冷表面附着的水膜 和空气中的水份处于动态平衡 也就是说 在单位时间内离开和返回到表面上的水分子数相同 这就是 Regnault 原理 该原理可以叙述为 当一定体积的湿空气在恒定的总压力下被均匀降温 直到空气中的水汽达到饱和状态 该状态叫做露点 在冷却的过程中 气体和水汽两者的分压力 保持不变 如果空气的温度是 Ta 露生成的温度为 Td 则湿空气的相对湿度可以通过下式算出 U 在露点温度 Td时的饱和水气压 在原来温度 Ta时的饱和水气压 100 式中饱和水汽压的数值可以通过查表得到 在 0 以下 水汽达到饱和时 水在镜面上结冰 此时的温度又叫做霜点 二 露点测量中应该注意的若干问题 一 镜面污染对露点测量的影响 在露点测量中 镜面污染是一个突出的问题 其影响主要表现在两个方面 一是拉乌尔效 应 二是改变镜面本底放射水平 拉乌尔效应是由水溶性物质造成的 如果被测气体中携带这种 物质 一般是可溶性盐类 则镜面提前结露 使测量结果产生正偏差 若污染物是不溶于水的微粒 如灰尘等 则会增加本底的散射水平 从而使光电露点仪发生零点漂移 此外 一些沸点比水低 的容易冷凝的物质 例如有机物 的蒸气 不言而喻将对露点的测量产生干扰 因此 无论任何一 种类型的露点仪都应防止污染镜面 一般说来 工业流程气体分析污染的影响是比较严重的 但 即使是在纯气的测量中镜面的污染亦会随时间增加而积累 二 露点仪测量条件的选择 在露点仪的设计中要着重考虑直接影响结露过程热质交换的各种因素 这个原则同样适用 于自动化程度不太高的露点仪器操作条件的选择 这里主要讨论镜面降温速度和样气流速问题 被测气体的温度通常都是室温 因此当气流通过露点室时必然要影响体系的传热和传质过 程 当其它条件固定时 加大流速将有利于气流和镜面之间的传质 特别是在进行低霜点测量时 流速应适当提高 以加快露层形成速度 但是流速不能太大 否则会造成过热问题 这对制冷功 率比较小的热电制冷露点仪尤为明显 流速太大还会导致露点室压力降低而流速的改变又将影响 体系的热平衡 所以在露点测量中选择适当的流速是必要的 流速的选择应视制冷方法和露点室 的结构而定 一般的流速范围在 0 4 0 7L min 1之间 为了减小传热的影响 可考虑在被测气 体进入露点室之前进行预冷处理 在露点测量中镜面降温速度的控制是一个重要问题 对于自动光电露点仪是由设计决定的 而对于手控制冷量的露点仪则是操作中的问题 因为冷源的冷却点 测温点和镜面间的热传导有 一个过程并存在一定的温度梯度 所以热惯性将影响结露 霜 的过程和速度 给测量结果带来误 差 这种情况又随使用的测温元件不同而异 例如由于结构关系 铂电阻感温元件的测量点与镜 面之间的温度梯度比较大 热传导速度也比较慢 从而使测温和结露不能同步进行 而且导致露 层的厚度无法控制 这对目视检露来说将产生负误差 另一个问题是降温速度太快可能造成 过冷 我们知道 在一定条件下 水汽达到饱和 状态时 液相仍然不出现 或者水在零度以下时仍不结冰 这种现象称为过饱和或 过冷 对 于结露 或霜 过程来说 这种现象往往是由于被测气体和镜面非常干净 乃至缺少足够数量的凝 结核心而引起的 Suomi 在实验中发现 如果一个高度抛光的镜面并且其干净程度合乎化学要求 则露的形成温度要比真实的露点温度低几度 过冷现象是短暂的 共时间长短和露点或霜点温度有关 这种现象可以通过显微镜观察出 来 解决的办法之一是重复加热和冷却镜面的操作 直到这种现象消除为止 另一个解决办法是 直接利用过冷水的水汽压数据 并且这样作恰恰与气象系统低于零度时的相对湿度定义相吻合 由上可见 无论是从热惯性或过冷现象来考虑 降温速度都不宜太快 如果超过合理范围 则降温速度愈快 热惯性也愈大 露点测量的误差就愈大 也越容易出现过冷 最佳降温速度一 般通过实验来确定 饱和水蒸气压公式 饱和是一种动态平衡态 在该状态下 气相中的水汽浓度或密度保持恒定 在整个湿度的换算过 程中 对于饱和水蒸气压公式的 选取显得尤为重要 因此下面介绍几种常用的 1 克拉柏龙 克劳修斯方程 该方程是以理论概念为基础的 表示物质相平衡的关系式 它把饱和蒸汽压随温度的变 化 容积的变化和过程的热效应三者联系 起来 方程如下 T 为循环的温度 dT 为循环的温差 L 为热量 这里为汽化潜热 相变热 为饱和 蒸汽的比容 为液体的比容 e 为饱和 蒸汽压 这就是著名的克拉柏龙 克劳修斯方程 该方程不但适用于水的汽化 也适用于冰的升华 当用于升华时 L 为升华潜热 2 卡末林 昂尼斯方程 实际的蒸汽和理想气体不同 原因在于气体分子本身具有体积 分子间存在吸引力 卡 末林 昂尼斯气体状态方程考虑了这种 力的影响 卡末林 昂尼斯于 1901 年提出了状态方程的维里表达式 e 表示水汽压 这些维里系数都可以通过实验测定 其中的第二和第三维里系数都已经有了普遍的计算 公式 例如接近大气压力 温度在 150K 到 400K 时 第二维里系数计算公式 一般在我们所讨论的温度范围内 第四维里系数可以不予考虑 3 Goff Grattch 饱和水汽压公式 从 1947 年起 世界气象组织就推荐使用 Goff Grattch 的水汽压方程 该方程是以后多 年世界公认的最准确的公式 它包括两 个公式 一个用于液 汽平衡 另一个用于固 汽平衡 对于水平面上的饱和水汽压 式中 T0 为水三项点温度 273 16 K 对于冰面上的饱和水汽压 以上两式为 1966 年世界气象组织发布的国际气象用表所采用 4 Wexler Greenspan 水汽压公式 1971 年 美国国家标准局的 Wexler 和 Greenspan 根据 25 100 范围水面上饱和 水汽压的精确测量数据 以克拉柏龙 一克劳修斯方程为基础 结合卡末林 昂尼斯方程 经过简单的数学运算并参照试验数据作了 部分修正 导出了 0 100 范 围内水面上的饱和水汽压的计算公式 该式的计算值与实验值基本符合 式中常数项的个数 n 一般取 4 8 例如 n 为 4 时 各项系数为 C 0 0 60436117 10 4 C 1 0 1893292601 10 2 C 2 0 28244925 10 1 C 3 0 17250331 10 4 C 4 0 2858487 10 由于冰面上的饱和水汽压试验数据较少 Wexler 类似 0 100 范围内水面上的饱 和水汽压的计算公式 使用了 Guildner 等人的三相点蒸气压试验数据 导出了冰面上的饱和水汽压公式 类似于上式 不再列出 5 饱和水汽压的简化公式 上述的饱和水汽压公式均比较繁杂 为了适应大多数工程实践需要 特别是利于计算机 微处理器编程需要 总结了一组简化饱 和水汽压公式 对于水面饱和水汽压 对于冰面饱和水汽压 上式与 Goff Gratch 和 Wexler 公式的最大相对偏差小于 0 2 以上五个求饱和水蒸气压值的公式很具有代表性 与此相关的公式也基本通过它们得来 包括 Michell 公司和 Thunder 公司 在这里介绍一下 Michell 公司和 Thunder 公司在程序中所使用的饱和水蒸汽压以及露点温度 和增强因子等几个重要参量的计算公 式 6 Michell Instruments Ltd 中使用的饱和水汽压计算公式 通过查阅资料知 Michell 公司计算饱和水蒸气压的计算公式 一组是简化的 一组是复 杂的 简化公式如下 饱和水蒸气压的单位 Pa 在水面上 其中温度范围是 45 60 不确定度小于 0 6 置信空间在 95 在冰面上 其中温度范围是 65 0 01 不确定度小于 1 0 置信空间在 95 另一组复杂公式如下所示 在水面上 在冰面上 该组公式也相应的给出了不确定度 在水面上温度范围从 0 100 饱和水蒸气 压的不确定小于 0 1 而对于过冷水 即 50 0 不确定度为 0 6 在冰面上 温度范围从 100 0 01 饱和水蒸气压的 不确定小于 1 上述两公式的置 信空间都在 95 资料中给出的露点计算公式是将求饱和水蒸气压简化公式中的温度值反推 公式如下 在水面上 在 45 60 温度范围内 露点值 td 的不确定度为 0 04 在冰面上 在 65 0 01 温度范围内 霜点值 td 的不确定度为 0 08 在增强因子的计算中 Michell 也给出了两个公式 条件主要是由环境的压力值来确定 的 公式如下 若压力 P 在 3kPa 110kpa 间 该公式在 50 60 内计算出的 f 值的不确定度在 0 08 内 若压力 P 在一标准大气压至 2MPa 其中 A i 和 B i 的值如下表 过冷水 50 0 水面上 0 100 冰面上 100 0 A1 3 62183 10 4 3 53624 10 4 3 64449 10 4 A2 2 60553 10 5 2 93228 10 5 2 93631 10 5 A3 3 86501 10 7 2 61474 10 7 4 88635 10 7 A4 3 82449 10 9 8 57358 10 9 4 36543 10 9 B1 10 7604 10 7588 10 7271 B2 6 39725 10 2 6 32529 10 2 7 61989 10 2 B3 2 63416 10 4 2 53591 10 4 1 74771 10 4 B4 1 67254 10 6 6 33784 10 7 2 46721 10 6 以上主要是 Michell 公司编制的湿度计算软件中采用的几个关键参数的计算公式 7 HumiCalc 中使用的饱和水汽压公式 Thunder 公司分别给出了在 68 温标和 90 温标下的计算公式 由于现在涉及到温度的 计算都采用 90 温标 因此本文中所提 到的公式没有特殊说明都是采用 90 温标 饱和水蒸气压的计算公式如下 在水面上 T 的单位为 K 温度范围 t 0 100 系数 g 值列表如下 g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 2836 574 4 6028 07655 9 19 5426361 2 0 0273783018 8 1 626169 8 10 5 7 022905 6 10 10 1 868000 9 10 13 2 715030 5 在冰面上 T 的单位为 K 温度范围 t 100 0 系数 k 值列表如下 k 0 k 1 k 2 k 3 k 4 k 5 5886 6426 22 32870244 0 0139387003 3 4262402 10 5 2 7040955 10 8 0 67063522 Thunder 公司的饱和水蒸气的计算公式是根据 Wexler Greenspan 水汽压公式来的 只是 方程中所用的系数值 g 和 k 取 得更加精确 所查阅的 Thunder 公司资料中没有指出其公式计算出的不确定度 但我们同 Michell 公司的公式以及相应的其它同 类计算公式比对从数据上可以看出值是比较接近的 说明该公式精度是很高的 只是公式的表达 方式不同 Thunder 公司的露点和霜点的计算公式 如下 在水面上 露点计算公式 c 和 d 系数列表值 c 0 c 1 c 2 c 3 d 0 d 1 d 2 d 3 207 98233 20 156028 0 46778925 9 2288067 10 6 1 0 133196695 6577518 10 3 7 5172865 10 5 在冰面上 霜点计算公式 c 和 d 系数列表值 c 0 c 1 c 2 d 0 d 1 d 2 d 3 212 57969 10 264612 0 14354796 1 8 2871619 10 2 2 3540411 10 3 2 436395 10 5 对增强因子的计算 Thunder 公司只给出了一种公式 格式上看同 Michell 公司给出的 公式例同 压力 P 在一标准大气压 至 2MPa 间的 只是在 Ai 和 Bi 的取值稍有不同 公式如下 其中 Ai 和 Bi 的值如下表 系数 过冷水 50 0 水面上 0 100 冰面上 100 50 冰面上 50 0 A1 3 62183 10 4 3 53624 10 4 9 8830022 10 4 3 61345 10 4 A2 2 6061244 10 5 2 9328363 10 5 5 7429701 10 5 2 9471685 10 5 A3 3 8667770 10 7 2 6168979 10 7 8 9023096 10 7 5 2191167 10 7 A4 3 82449 10 9 8 5813609 10 9 6 2038841 10 9 5 0194210 10 9 B1 10 7604 10 7588 10 415113 10 7401 B2 6 3987441 10 2 6 3268134 10 2 9 1177156 10 2 7 3698447 10 2 B3 2 6351566 10 4 2 5368934 10 45 1128274 10 5 2 6890021 10 4 B4 1 6725084 10 6 6 3405286 10 7 3 5499292 10 6 1 5395086 10 6 综上所述 从各公式的系数取值上看 Thunder 公司所给出的划分得更细 而且保留的位 数也较多 如在计算增强因子的公式中 两者的计算公式完全相同只是系数取值稍有不同 在露点计算公式上 Thunder 公司的公式较为 复杂 但从结果比对上看准确度和精度 是很高的 总的看来尽管两公司在湿度软件的个别计算公式有所差异 但最后计算的结果带来的 误差很小 比较而言 Thunder 公司的 在公式选择以及使用上更优于 Michell 具体的环境中可以根据具体的要求来选择公式 湿度发生器 从目前来看 湿度发生器主要利用一下五种原理 1 改变已知湿度气体 主要是指饱和湿气 状态的方法 1 改变已知湿度气体 主要是指饱和湿气 状态的方法 我们知道 气体的状态由压力 温度和体积来确定 对于饱和湿 气 如果状态条件不变 那末水汽的含量是恒定的 反之 若状态改变 水汽含量亦随之改变 于是可以利用热力学 P v T 关系配制出所要求的湿度的气体 基于这一原理的方法有改变压力的方法 即双压法 改变温度 的方法 即双温法 以及同时改变压 力和温度的方法 2 混合法 2 混合法 它又可以分为混流法和分流法两种 前者是将饱和湿气或过热蒸汽同干气混 合 后者是将一股干气精确地按比例分 为两股 其中一股用水汽饱和 另一股仍保持干燥 而后进行混合 3 膜渗透法 3 膜渗透法 膜的一侧是水 由于膜两侧的水汽分压不同 于是水汽通过膜向另一侧渗 透 基干这一原理通常使用的方法是渗 透管配气技术 4 温度固定点法 4 温度固定点法 即平衡水汽压法 这种方法是利用某些盐类或其它化合物 例如硫酸 和甘油 的水溶液在一定的条件下其气 相中的水汽分压保持恒定的原理 5 化学方法 5 化学方法 根据定比定律 氢和氧在催化剂存在的情况下能按比例地化合 生成定量的 水 饱和器是这些发生器结构的重要组成部分 是发生含有饱和水汽的湿空气的装置 因此 建立在发生饱和湿气基础上的各种恒湿 气体发生器 其性能与饱和器的效率密切相关 从发生器的工作原理 特点和适用的湿度范围出 发 饱和器可以设计成多种形式 主 要有 1 鼓泡式 2 喷雾式 3 塔板式 4 管式 5 离心式 6 迷宫 式 下面介绍几种典型的湿度发生器 一 双压法湿度发生器一 双压法湿度发生器 原理 气体在加压状态下被水汽饱和然后减压膨胀 假如气体在饱和 膨胀过程温度保持恒 定 并服从理想气体定律 那末由道尔 顿定律可得到如下关系式 式中 e w 和 P s 分别为饱和器中的饱和水汽分压和气体的总压 e c 和 P c 分别为 试验腔中的水汽分压和气体的总压 那 末 据定义 在温度 t 时 低压下的气体的相对温度可按下式计算 U Pc Ps 100 如果饱和器内的温度和试验室内的温度也不相同 即变成既改变压力也改变温度的情 况 则试验室的相对湿度可采用下式计算 U Pc Ps ew Ts ew Tc 100 式中 ew Ts 和 ew Tc 分别为饱和器和试验腔温度下的饱和水汽分压 双压湿度发生器通常由如下六个部分组成 1 气源系统 2 载气干燥系统 3 饱和器系统 4 试验腔 5 恒温系统 6 温度和压力的测量与控制系统 二 双温法湿度发生器二 双温法湿度发生器 原理 ts 和 tc 分别为饱和器温度和试验腔温度 通过气泵使气流在饱和器与试验腔之 间不断循环 经过一定时间之后 气流 中的水汽达到饱和状态 e w T s 是在温度 T s 下的饱和水汽压力 e c 是在较高温度 T c 下的饱和水汽压力 假设气体 为理想气体 并且饱和器总压力 P s 等于试验腔内气体的总压力 P c 那么 在温度为 T c 的 试验腔内气体的相对湿度可以用如 下式计算 U ew Ts ew Tc 100 在 Ps 和 Pc 不一致时 特别是在气流速度较高的情况下 就需要考虑进行压力修正 U ew Ts ew Tc Pc Ps 100 基于两个温度原理设计的密闭式湿度发生器有多种不同的结构形式 三 低霜点湿度发生器三 低霜点湿度发生器 低霜点湿度发生器是一种专门用于低湿领域校正的能够发生水汽含量低至 ppm 级 即 低于百万分之一 气体的设备 同双温法相似 霜点湿度发生器制备已知湿度气体的过程是一个等压变温过程 经过充 分干燥的气体首先流经一个热交换器然后 进入饱和器 换热器和饱和器均浸没在一个恒温液体槽中 饱和器是一根螺旋形金属盘管 管的 内表面为大约 1mm 厚的薄冰层所覆 盖 通过饱和器的气流距离冰层表面不超过 4mm 在流速为 2L min 时 气体的平均传质时间 大约 7s 干气流经过换热达到槽温而后进入饱和器 因为使气流达到饱和所需的水汽量非常小 所以管内冰的升华作用不会导致冰面温度 明显下降 另外 由于盘管足够长 气体的饱和过程在盘管的前部就己完成 盘管其余部分只是 作为饱和气体最后换热之用 通过饱 和器的气体不存在明显的压力降 饱和器出口端气体的温度与饱和器的温度相同或十分接近 所 以这一温度可视为气流的霜点温度 四 分流法湿度发生器四 分流法湿度发生器 原理 干气源 一般是干空气 的气体按一定的比例分成两部分 一路进入饱和器 S 被饱和的气流在混合室 C M 中同另一 股干气混合 而后进入试验腔 C T 最后排入大气 饱和器 混合室和试验腔浸在同一个恒温 槽中 试验腔中的相对湿度是下列因素的函数 1 通过饱和器的空气的份数 2 饱和器中的总压力 3 饱和水汽压力 4 试验腔中的水汽分压力 计算试验腔中相对湿度的公式 U 100 X 1 1 X es Ps 式中 X 分流比 es 为饱和器中的水汽分压力 Ps 为饱和器中的总压力 分流法的相对温度不确定度一般在 1 3 范围内 所以在低温下使用上述简化式完全能满足方 法的准确度要求 五 渗透法湿度发生器五 渗透法湿度发生器 渗透管的工作基础就是依据膜渗透原理 水分子穿过管壁的渗透过程遵循 Fick 定律 q D S dP dB 式中 q 渗透速率 D 渗透系数 S 有效渗透面积 dP dB 膜两侧水汽的压力梯度 其中 B 为膜的厚度 由上式可见渗透速率与膜的材料及其密度 厚度 有效渗透面积 材料的物理特性 如 亲水或憎水 以及膜两侧的水汽分压差等 有关 发生器输出的标准气的水分浓度按下式计算 C q V F Mv 式中 C 标准汽的水分浓度 单位为 ppmv q 标定温度对应的渗透率 单位为 g min V 水汽的摩尔体积 单位为 L mol F 干载气流量 单位为 L min Mv 水的摩尔质量 单位为 g mol 由上可知 载气的干燥程度及其流量会直接影响输出气体的湿度量值 因此 载气必须 经干燥系统充分干燥 同时要求气源稳定 和对流量进行准确的测量 发生器的准确度取决于所用的渗透管渗透率标定的不确定度 气源的 稳定性 载气流量测定的准确度 以 及恒温精度 上述只是介绍了几种常用的湿度发生器 还有一些类似的我们会在今后的工作中陆续更 新 湿度传感器 能够用来制造湿度传感器的吸湿物质必须满足湿度 电阻 或电容 特性可逆这一基本条件 同 时应当具有良好的重复性 利用这 些物质制成的湿敏元件 配上适当的电路便构成相应的湿度测量仪表 人们通常把基于测量吸湿 物质的电阻或电容变化的湿度计称为 湿度传感器 主要有氯化锂湿度传感器 氧化铝湿度传感器 碳和陶瓷湿度传感器 以及利用高 聚物膜和各种无机化合物晶体 如铌 酸锂 硫化镉 氯化钠等制作的电阻式湿度传感器等 下面对各种湿度传感器进行简单的介绍 湿度传感器 1 氯化锂湿度传感器1 氯化锂湿度传感器 1 电阻式氯化锂湿度计 第一个基于电阻 湿度特性原理的氯化锂电湿敏元件是美国标准局的 F W Dunmore 研制 出来的 这种元件具有较高的精度 同时 结构简单 价廉 适用于常温常湿的测控等一系列优点 氯化锂元件的测量范围与湿敏层的氯化锂浓度及其它成分有关 单个元件的有效感湿范 围一般在 20 RH 以内 例如 0 05 的浓 度对应的感湿范围约为 80 100 RH 0 2 的浓度对应范围是 60 80 RH 等 由此可 见 要测量较宽的湿度范围时 必 须把不同浓度的元件组合在一起使用 可用于全量程测量的湿度计组合的元件数一般为 5 个 采 用元件组合法的氯化锂湿度计可测范 围通常为 15 100 RH 国外有些产品声称其测量范围可达 2 100 RH 2 露点式氯化锂湿度计 露点式氯化锂湿度计是由美国的 Forboro 公司首先研制出来的 其后我国和许多国家都 做了大量的研究工作 这种湿度计和上 述电阻式氯化锂湿度计形式相似 但工作原理却完全不同 简而言之 它是利用氯化锂饱和水溶 液的饱和水汽压随温度变化而进行工 作的 2 碳湿敏元件2 碳湿敏元件 碳湿敏元件是美国的 E K Carver 和 C W Breasefield 于 1942 年首先提出来的 与常 用的毛发 肠衣和氯化锂等探空元件相 比 碳湿敏元件具有响应速度快 重复性好 无冲蚀效应和滞后环窄等优点 因之令人瞩目 我 国气象部门于 70 年代初开展碳湿敏元 件的研制 并取得了积极的成果 其测量不确定度不超过 5 RH 时间常数在正温时为 2 3s 滞差一般在 7 左右 比阻稳定性亦 较好 3 氧化铝湿度计3 氧化铝湿度计 氧化铝传感器的突出优点是 体积可以非常小 例如用于探空仪的湿敏元件仅 90 m 厚 12mg 重 灵敏度高 测量下限达 110 露点 响应速度快 一般在 0 3s 到 3s 之间 测量信号直接以电参量的形式输出 大大简化了数据处理程序 等等 另 外 它还适用于测量液体中的水分 如上特点正是工业和气象中的某些测量领域所希望的 因此 它被认为是进行高空大气探测可供选 择的几种合乎要求的传感器之一 也正是因为这些特点使人们对这种方法产生浓厚的兴趣 然而 遗憾的是尽管许多国家的专业人员 为改进传感器的性能进行了不懈的努力 但是在探索生产质量稳定的产品的工艺条件 以及提高 性能稳定性等与实用有关的重要问题 上始终未能取得重大的突破 因此 到目前为止 传感器通常只能在特定的条件和有限的范围内 使用 近年来 这种方法在工业中的 低霜点测量方面开始崭露头角 4 陶瓷湿度传感器4 陶瓷湿度传感器 在湿度测量领域中 对于低湿和高湿及其在低温和高温条件下的测量 到目前为止仍然 是一个薄弱环节 而其中又以高温条件下 的湿度测量技术最为落后 以往 通风干湿球湿度计几乎是在这个温度条件下可以使用的唯一方 法 而该法在实际使用中亦存在种种 问题 无法令人满意 另一方面 科学技术的进展 要求在高温下测量湿度的场合越来越多 例 如水泥 金属冶炼 食品加工等涉及 工艺条件和质量控制的许多工业过程的湿度测量与控制 因此 自 60 年代起 许多国家开始竟 相研制适用于高温条件下进行测量的湿 度传感器 考虑到传感器的使用条件 人们很自然地把探索方向着眼于既具有吸水性又能耐高温的 某些无机物上 实践已经证明 陶瓷元件 不仅具有湿敏特性 而且还可以作为感温元件和气敏元件 这些特性使它极有可能成为一种有发 展前途的多功能传感器 寺日 福岛 新田等人在这方面已经迈出了颇为成功的一步 他们于 1980 年研制成称之为 湿瓷 型 和 湿瓷 型 的多功能传感器 前者可测控温度和湿度 主要用于空调 后者可用来测量湿度和诸如酒精等多种有机蒸气 主要 用于食品加工方面 各种类型湿度传感器 以上几种是应用较多的几种类型传感器 另外还有其他根据不同原理而研制的湿度传感 器 这里就不一一介绍了 基础知识 基础知识 就让我们从湿度的基本概念和定义开始了解吧 1 干空气与水蒸气的分压 自然界的空气总含有一些水蒸汽 可称之为湿空气 即湿空气可看成干空气与水蒸气的 混合物 若令 P 代表大气压强 即湿空 气的总压 Pa 和 Pw 分别代表干空气及水蒸气的分压 则按道尔顿分压定律有 Pa 2 露点 Td 和霜点 Tf 如果给定的空气在水汽压不变的情况下逐渐冷却 当达到某一温度时 空气的水汽压达 到了该温度下的饱和蒸汽压 当空气进一 步冷却时 如果在空气中有一个光洁的平面和 冷凝核心 如表面上的微粒和缺陷的棱角 水汽就会在平面上凝结成露点 此温 度 Td 称为露点温度 确切的说 应为热力学露点温度 当空气的温度低于 0 时 水汽在平面 上凝结成霜 该温度 Tf 被称为霜点 露点和露点的计算公式详见饱和水蒸气压公式中的介绍 3 相对湿度 RH 相对湿度是指空气中水汽的摩尔分数与相同温度 T 压力 P 下纯水表面的饱和水 汽的摩尔份数之比 用百分数表示 式中 e 表示水气分压 Pa ew 表示饱和水蒸气压力 Pa 相对湿度越小 就表示是空气离饱和态越远 尚有吸收更多水蒸气的能力 即空气越干 燥 吸收水蒸气能力越强 反之 相对湿 度越大 吸收水蒸汽能力越弱 即空气越潮湿 相对湿度反映了湿空气中水蒸汽含量接近饱和的 程度 故又称饱和度 4 气象相对湿度 RH 气象相对湿度的定义同 3 相对湿度 RH 的定义基本相同 只是低于 0 时 相对湿 度仍以过冷水即液面饱和水汽压计算公 式来计算饱和气压值 所以在计算 ew 时我们始终用水面上饱和气压值计算公式来计算 低于 0 看成过冷水 这点在同标准相对湿 度是不同的 5 水气分压 WVP 就是在总压下水蒸汽所占的压力 表示为 e 若将湿空气视作理想二元气体混合物 根 据道尔顿分压定律 引入摩尔分数可得到 式中 P 为实际气体的压力 包括水汽分压 e 与干空气分压 Pa r 表湿空气的混合比 6 饱和水蒸汽压力 SWVP 即湿空气处于露点温度或霜点温度 饱和状态时 时水蒸气所占的分压值 7 混合比 R W 湿空气的混合比 R W 是指湿空气中所含的水汽质量和与它共存的干空气质量的比值 当把湿空气视作理想气体时 由理想气体状态方程可以导出如下关系式 式中 Mw 为水的分子量 18 0153 Ma 为干空气的分子量 28 9635 8 混合比 R V 气体的湿度除可用质量比的形式来表示之外 也可以用体积比来表示 即水汽体积与干 空气体积之比 体积混合 比 对于理想状态有 9 PPM V 在湿度测量中体积比还经常用水汽的体积和与之共存的干空气的体积之比 百万分之一 来表示 即 PPM V 公式如下 式中 P 为湿空气的总压力 e 为湿空气中的水汽分压 10 PPM W 以 百万分之一 为计算单位表示的水汽与其共存的干空气的质量之比 公式如下 式中 mw 是给定的湿空气中的水汽质量 单位为 g ma 是与质量为 mw 的水汽共存的干空气质量 单位为 g 11 比湿 湿空气中的水汽质量与湿空气的总质量之比 表示式为 当把湿空气视作理想气体时 将理想气体状态方程代入上式 可以导出如下关系式 12 绝对湿度 绝对湿度亦称为水气浓度和水气密度 定义为湿空气中的水汽质量与湿空气的总体积之 比 表示为 式中 V 是湿空气的总体积 m3 w 是绝对湿度 g m3 如果将湿空气视作理想气体 可导出如下关系式 13 焓 H 湿空气的热含量是指单位质量绝热干空气在常压下 以 0 为基准的热焓 用 H 表示 单位为 kJ kg 干空气 式中 d 为空气的含湿量 kg 水蒸气 kg 干空气 Ca Cw 绝干空气与水蒸气在 0 t 的平均定压比热 它们是温度的函数 在 200 以 下的干燥范围内可取 Ca 1 006 Cw 1 930kJ kg t 空气的温度 2490 是水在 0 时的汽化潜热 kJ kg 14 湿球温度 Tw 在压力为 P 温度为 T 条件下 纯水 湿空气体系进行绝热蒸发 达到平衡状态时湿球 所对应的温度就叫湿球温度 Tw 根据干湿表公式 空气的水汽压 e mb 为 式中 etw 为湿球温度 tw 所对应的纯水平液面的饱和水汽压 mb 当湿球结冰时 即为纯水平冰面的饱和水汽压 A 为干湿表系数 1 在湿球球部 柱状 通风速度为 3 5m s 条件下 当湿球未结冰时 A 0 667 10 3 1 当湿球结冰时 A 0 588 10 3 1 P 为本站气压 mb t 为干球温度 tw 为湿球温度 15 增强因子 f 由于实际气体并非理想气体 所以实际气体混合物并不完全遵守道尔顿分压定律 具体 地说 当水汽与其临界温度以下的其他气 体混合时和水面或冰面平衡时的水汽压力与只存在纯水汽的情况不同 一般称作有效饱和压力 e 有效饱和压力比只有纯水汽时的饱 和压力要大 e f e 式中 f 称为增强因子 e 为气相纯水汽时的饱和压力 e 为相同条件下与其它气体共存时的饱和水气分压 16 体积百分比 在标准压力和温度下 湿空气中水汽所占有的体积与其它总体积的百分比 公式如下 体 积 百分数 对于理 想状态有 17 重量百分比 湿空气中所含的水汽质量和与它共存的干空气质量的百分比 公式如下 当把湿空气视作理想气体时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论