神经网络复习资料.doc_第1页
神经网络复习资料.doc_第2页
神经网络复习资料.doc_第3页
神经网络复习资料.doc_第4页
神经网络复习资料.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

神经元的数学模型,网络结构,输入与输出网络结构:递归网络、单层前馈馈,多层前馈BP神经网络是误差反向传播神经网络的简称。激活函数的类型1阈值函数2sigmond函数神经网络中常见的非线性单元三种基本的神经网络架构感知机、Hamming网络、Hopfield网络知识表示的规则三种距离(1) 欧几里得距离x(1)与x(2)距离::内积:根据教师信号有无,机器学习可分为有教师学习和无教师学习,其中无教师学习又分为无监督学习和强化学习传统电子计算机与神经网络计算机的异同机器学习有哪些任务1模式联想,模式识别,函数逼近,控制,波束形成2第一章感知器收敛定理:感知器收敛算法:感知器收敛条件:初始条件w(0)等于0贝叶斯分类准则:感知器与贝叶斯的比较:2章如何克服感知器非线性可分的条件约束,举例说明如何解决XOR问题XOR问题就是如何用神经网络实现异或逻辑。写出线性回归的表示,并给出最大后验和最大似然估计权重向量计算公式,并指出两者的不同点最大似然估计最大后验估计无约束优化方法:当观察样本趋于无穷时,线性最小二乘滤波器渐进于维纳滤波器:最小均方算法:最小均方算法和最小二乘算法区别:准则函数不同最小均方算法代价函数:更新公式:最小二乘算法代价函数:更新公式:w(n+1)=(XT(n)XT(n)-1XT(n)d(n)3正则最小二乘算法 更新函数: W=Rxx(N)+I-1rdx(N) 隐藏神经元的功能: =批量学习和在线学习的区别:如何用多层感知器解决XOR问题:主量分析:21 PCA算法介绍211 PCA原理令x为表示环境的m维随机向量。假设x均值为零,即:Ex=O令w表示为m维单位向量,x在其上投影。这个投影被定义为向量x和w的内积,表示为:而主成分分析的目的就是寻找一个权值向量w使得表达式Ey2的值最大化:根据线性代数的理论,可以知道满足式子值最大化的训应该满足下式:即使得上述式子最大化的w是矩阵Cx的最大特征值所对应的特征向量。212 主成分的求解步骤在PCA中主要的是要求出使得方差最大的转化方向,其具体的求解步骤如下:(1)构建关联矩阵:Cx=Ex*xT,CxPn*n.在实际应用中,由于原始数据的数学期望不容易求解,我们可以利用下式来近似构造关联矩阵:(其中x1,x2,xN,是各个原始灰度图像所有象素点对应的向量,N是原始图像的个数)(2)先计算出Cx的各个特征值(3)把特征值按大小排序(4)计算出前m个特征值对应正交的特征向量构成w。(5) 将原始数据在特征向量w上进行投影,即可获得原始图像的主特征数据。GHA与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论