




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章:弹性变形及其本构方程3-5试依据物体三向受拉,体积不会缩小的体积应变规律,来证明泊松比V的上下限为0V;证明:当材料处于各向等值的均匀拉伸应力状态下时,其应力分量为:11=22=33=p 12=23=31=0如果我们定义材料的体积弹性模量为k,则显然:k=,e为体积应变。将上述应力分量的值代入广义胡克定律: 得:三式相加得:将p=ke代入上式得:(1)由弹性应变能u0的正定性(也就是说在任何非零的应力值作用下,材料变形时,其弹性应变能总是正的。)知k0,E0,G0。因:我们知道体积变形e与形状变化部分,这两部分可看成是相互独立的,因此由uo的正定性可推知:k0,G0。而又知: 所以:E0。我们将(1)式变化为:(2)由(2)式及k0, G0 ,E0知:1+V0,1-2V0。解得:-1V。但是由于到目前为止,还没有发现有V0的材料,而只发现有V值接近于其极限值的材料(例如:橡胶、石腊)和V值几乎等于零的材料(例如:软木)。因此,一般认为泊松比V的上、下限值为和0,所以得:0V 或:0V;3-10直径为D=40mm的铝圆柱体,紧密地放入厚度为2mm的钢套中,圆柱受轴向压力P=40KN。若铝的弹性常数据E1=70G.V1=0.35,钢的弹性常数E=210G。试求筒内的周向应力。解:设铝块受压而 则周向应变 q=2.8MN/m2钢套 ; ; ; ;4-14.试证明在弹性范围内剪应力不产生体积应变,并由纯剪状态说明v=0。证明:在外力作用下,物体将产生变形,也即将产生体积的改变和形状的改变。前者称为体变,后者称为形变。并且可将一点的应力张量ij和应变张量ij分解为,球应力张量、球应变张量和偏应力张量、偏应变张量。而球应变张量只产生体变,偏应变张量只引起形变。通过推导,我们在小变形的前提下,对于各向同性的线弹体建立了用球应力、球应变分量和偏应力分量,偏应变分量表示的广义胡克定律:(1) 式中:e为体积应变 由(1)式可知,物体的体积应变是由平均正力m确定,由eij中的三个正应力之和为令,以及(2)式知,应变偏量只引起形变,而与体变无关。这说明物体产生体变时,只能是平均正应力m作用的结果,而与偏应力张量无关进一步说就是与剪应力无关。物体的体积变形只能是并且完全是由球应力张量引起的。由单位体积的应变比能公式:;也可说明物体的体变只能是由球应力分量引起的。当某一单元体处于纯剪切应力状态时:其弹性应变比能为:由uo的正定性知:E0,1+v0.得:v-1。由于到目前为止还没有v0。3-16给定单向拉伸曲线如图所示,s、E、E均为已知,当知道B点的应变为时,试求该点的塑性应变。解:由该材料的曲线图可知,该种材料为线性强化弹塑性材料。由于B点的应变已进入弹塑性阶段,故该点的应变应为:B=e+p故:p=-e;3-19已知藻壁圆筒承受拉应力及扭矩的作用,若使用Mises条件,试求屈服时扭转应力应为多大?并求出此时塑性应变增量的比值。解:由于是藻壁圆筒,所可认圆筒上各点的应力状态是均匀分布的。据题意圆筒内任意一点的应力状态为:(采用柱坐标表示),;,;于是据miess屈服条件知,当该藻壁圆筒在轴向拉力(固定不变)及扭矩M(遂渐增大,直到材料产生屈服)的作用下,产生屈服时,有:解出得:;就是当圆筒屈服时其横截面上的扭转应力。任意一点的球应力分量m为:应力偏量为:;由增量理论知:于是得:;所以此时的塑性应变增量的比值为:0:0:也即:(-1):(-1):2:0:0:6;3-20一藻壁圆筒平均半径为r,壁厚为t,承受内压力p作用,且材料是不可压缩的,;讨论下列三种情况:(1):管的两端是自由的;(2):管的两端是固定的;(3):管的两端是封闭的;分别用mises和Tresca两种屈服条件讨论p多大时,管子开始屈服,如已知单向拉伸试验r值。解:由于是藻壁圆筒,若采用柱坐标时,r0,据题意首先分析三种情况下,圆筒内任意一点的应力状态:(1):;(2):;(3):;显然知,若采用Tresca条件讨论时,(1)、(2)、(3)三种情况所得结果相同,也即:;解出得:;若采用mises屈服条件讨论时,则(2)(3)两种情况所得结论一样。于是得:(1):解出得:;(2)、(3):解出得:;3-22给出以下问题的最大剪应力条件与畸变能条件:(1):受内压作用的封闭藻壁圆管。设内压q,平均半径为r,壁厚为t,材料为理想弹塑性。(2):受拉力p和旁矩作用的杆。杆为矩形截面,面积bh,材料为理想弹塑性。解(1):由于是藻壁圆管且1。所以可以认为管壁上任意一点的应力状态为平面应力状态,即r=0,且应力均匀分布。那么任意一点的三个主应力为:;若采用 Tresca屈服条件,则有:;故得:; 或:;若采用mises屈服条件,则有:;故得:; 或:;解(2):该杆内任意一点的应力状态
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西旅发文化旅游股份有限公司招聘13人模拟试卷及答案详解(名校卷)
- 2025年B107型中变催化剂项目建议书
- 2025河南开封国禹建设投资有限公司开招聘3人考前自测高频考点模拟试题附答案详解(模拟题)
- 设备齐全汽车租赁协议6篇
- 2025年轨道工程橡胶制品项目合作计划书
- 2025年衢州龙游县卫健系统“智汇衢州”市县联动引进高层次紧缺卫生人才36人模拟试卷及参考答案详解1套
- 2025江苏盐城市第一人民医院招聘编外专业技术人员42人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025安徽安庆医药高等专科学校高层次人才招聘5人考前自测高频考点模拟试题及一套参考答案详解
- 屈辱岁月课件
- 2025福建武夷山市供销总公司招聘3人模拟试卷带答案详解
- 24.1.1《圆》数学人教版九年级上册教学课件
- 乳品领域:认养一头牛企业组织架构及部门职责
- 宠物乐园方案
- 自备车补贴申请表
- 注塑成型技术培训之工艺理解课件
- 信息论与编码(第4版)完整全套课件
- 广西佑太药业有限责任公司医药中间体项目环评报告书
- 汽修厂安全风险分级管控清单
- 海绵城市公园改造施工组织设计
- 上体自编教材-体育运动概论-模拟
- 05625《心理治疗》案例分析
评论
0/150
提交评论