新教材疑难问题分析与解决系列课程——初中数学(作业).doc_第1页
新教材疑难问题分析与解决系列课程——初中数学(作业).doc_第2页
新教材疑难问题分析与解决系列课程——初中数学(作业).doc_第3页
新教材疑难问题分析与解决系列课程——初中数学(作业).doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、“数与代数”内容中,教材呈现的主要特点有哪些?答:(1)重视对数的意义的理解,培养学生的数感和符号感;(2)淡化过分“形式化”和记忆的要求,重视在具体情境中去体验和理解有关知识;(3)注重过程,提倡在学习过程中学生的自主活动,提高发现规律探求模式的能力;(4)注重应用,加强对学生应用意识和解决实际问题能力的培养;(5)提倡使用计算器,降低对运算算复杂性和速度的要求,注重估算。其中尤为突出在数感培养,代数学抽象与代数模型三个方面。二、怎样全面归纳二次函数的性质?答:(一).定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 (二).二次函数的三种表达式 一般式:y=ax2+bx+c(a,b,c为常数,a0) 顶点式:y=a(x-h)2+k 抛物线的顶点P(h,k) 交点式:y=a(x-x1)(x-x2) 仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b2)/4a x1,x2=(-bb2;-4ac)/2a (三).二次函数的图像 在平面直角坐标系中作出二次函数y=x的图像, 可以看出,二次函数的图像是一条抛物线。 (四).抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P -b/2a ,(4ac-b2;)/4a 。 当-b/2a=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 = b2-4ac0时,抛物线与x轴有2个交点。 = b2-4ac=0时,抛物线与x轴有1个交点。 = b2-4ac0时,抛物线与x轴没有交点。 (五).二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax2;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 答案补充 画抛物线yax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 二次函数解析式的几种形式 (1)一般式:yax2+bx+c (a,b,c为常数,a0). (2)顶点式:ya(x-h)2+k(a,h,k为常数,a0). 说明:(1)任何一个二次函数通过配方都可以化为顶点式ya(x-h)2+k,抛物线的顶点坐标是(h,k),h0时,抛物线yax2+k的顶点在y轴上;当k0时,抛物线a(x-h)2的顶点在x轴上;当h0且k0时,抛物线yax2的顶点在原点 (3)两根式:ya(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c0的两个根,a0. 答案补充 如果图像经过原点,并且对称轴是y轴,则设y=ax2;如果对称轴是y轴,但不过原点,则设y=ax2+k三、“图形与几何”的核心目标是什么?答:“图形与几何”的核心目标在于帮助学生逐渐建立空间观念,积累几何活动经验,注重培养学生的几何直观与推理能力。四、“统计与概率”的核心目标与课程文化内涵是什么?答:“统计与概率”的核心目标在于帮助学生逐渐建立起数据分析观念,了解随机现象。 概率知识的学习不能走纯粹计算的路子,否则学生很难真正理解概率的意义。而生活中有大量可以用作理解概念的题目情境,教学就应当走试验的路子让学生通过对实际题目情境的感受去理解概率的含义。即使概率的定量化的学习牵涉到数值计算,也绝不是一个简单的算术题目,而应对其中概率值有理解,这必须通过学生的亲身试验获取数据、处理数据等,才可能正确形成。通过学习“统计与概率”认识现实生活中随机事件产生的实际性。从而对一些事件的认识有一个端正的态度。五、设计一堂课例,并给予设计说明。 初中数学教学案例 多边形内角和于都于阳初中 蓝紫龙一、教学目标1、知识目标:了解多边形内角和公式。2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。 3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。 4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。二、教学重、难点 重点:探索多边形内角和。 难点:探索多边形内角和时,如何把多边形转化成三角形。三、教学方法:引导发现法、讨论法四、教具、学具 教具:多媒体课件 学具:三角板、量角器五、教学过程: (一)创设情境,设疑激思师:大家都知道三角形的内角和是180 ,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。 师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。学生先独立思考每个问题再分组讨论。关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。 (2)学生能否采用不同的方法。学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180的和是540。方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。 交流后,学生运用几何画板演示并验证得到的方法。得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。(二)引申思考,培养创新师:通过前面的讨论,你能知道多边形内角和吗?活动三:探究任意多边形的内角和公式。思考:(1)多边形内角和与三角形内角和的关系? (2)多边形的边数与内角和的关系? (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?学生结合思考题进行讨论,并把讨论后的结果进行交流。发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。得出结论:多边形内角和公式:(n-2)180。(三)实际应用,优势互补1、口答:(1)七边形内角和( ) (2)九边形内角和( ) (3)十边形内角和( )2、抢答:(1)一个多边形的内角和等于1260,它是几边形? (2)一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论