




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【三年真题重温】1.【2011新课标全国理,15】已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 2.【2011 新课标全国文,16】已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上若圆锥底面面积是这个球面面积的 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 3.【2010新课标全国理,10】设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为(A) (B) (C) (D) 4.【2010新课标全国文,7】设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为 (A)3a2 (B)6a2 (C)12a2 (D) 24a25.【2012新课标全国理】已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为( ) 6.【2012新课标全国文】平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为 (A) (B)4 (C)4 (D)6【命题意图猜想】1.2011年理科高考是四棱锥和球的组合体,文科是圆锥和球的组合体,2010年理科考查的是三棱柱与球的组合体,文科考查的是长方体与球的组合体.2012年理科考查了三棱锥与球的组合体,试题难度较去年增大,文科只是简单考查了单一的几何体球的计算问题.从整体上看,试题难度理科较文科大,均需要学生有较强的画图能力和空间想象能力.并且均与球的外接或内切紧密联系到一起,猜想2013年高考试题不会逃离两个几何体的组合,且与球的组合体仍然是一个热点,以一种新颖的几何体的形态出现,考查几何体的体积或表面积.2.从近几年的考试题来看,空间几何体的表面积、体积等问题是高考的热点,题型既有选择题、填空题,又有解答题,难度为中、低档客观题主要考查由三视图得出几何体的直观图,求其表面积、体积或由几何体的表面积、体积得出某些量;主观题考查较全面,考查线、面位置关系,及表面积、体积公式,无论是何种题型都考查学生的空间想象能力预测2013年高考仍将以空间几何体的表面积、体积为主要考查点,重点考查学生的空间想象能力、运算能力及逻辑推理能力【最新考纲解读】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构(2)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆)【回归课本整合】3.球(1)球的概念:与定点距离等于或小于定长的点的集合,叫做球体;与定点距离等于定长的点的集合叫做球面. (2)球的截面:用一平面去截一个球,设是平面的垂线段,为垂足,且,所得的截面是以球心在截面内的射影为圆心,以为半径的一个圆,截面是一个圆面.球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆(3)球的表面积公式:.4.棱柱、棱锥与球的体积(1)棱柱:体积底面积高,或体积直截面面积侧棱长,特别地,直棱柱的体积底面积侧棱长;三棱柱的体积(其中为三棱柱一个侧面的面积,为与此侧面平行的侧棱到此侧面的距离)(2)棱锥:体积底面积高.(3)球的体积公式:.平行于底面的截面都是圆;过轴的截面(轴截面)是全等的矩形除了这两条重要特征外,还应掌握下面的一些重要属性所有的轴截面是以两底面直径和两条母线为边的全等矩形,若该矩形为正方形,则圆柱叫等边圆柱用平行于轴的平面去截圆柱,所得的截面是以底面圆的弦和两条母线为边的矩形也就是说过圆柱任意两条母线的截面一定是一个矩形,在这所有的截面矩形中,以轴截面面积最大(3)圆锥的结构特征平行于底面的截面都是圆;过轴的截面(轴截面)是全等的等腰三角形;过圆锥两条母线的截面当轴截面的顶角不大于90时,轴截面面积最大;当轴截面顶角大于90时,两母线垂直时截面面积最大(4)圆台的结构特征平行于底面的截面都是圆;过轴的截面是全等的等腰梯形2.正方体与球(1)正方体的内切球: 截面图为正方形EFGH的内切圆,如图所示.设正方体的棱长为,则.1. 求体积常见技巧当给出的几何体比较复杂,有关的计算公式无法运用,或者虽然几何体并不复杂,但条件中的已知元素彼此离散时,我们可采用“割”、“补”的技巧,化复杂几何体为简单几何体(柱、锥、台),或化离散为集中,给解题提供便利(1)几何体的“分割”:几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之(2)几何体的“补形”:与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体、正方体等另外补台成锥是常见的解决台体侧面积与体积的方法,由台体的定义,我们在有些情况下,可以将台体补成锥体研究体积(3)有关柱、锥、台、球的面积和体积的计算,应以公式为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素2.求体积常见方法直接法(公式法);转移法:利用祖暅原理或等积变化,把所求的几何体转化为与它等底、等高的几何体的体积;分割法求和法:把所求几何体分割成基本几何体的体积;补形法:通过补形化归为基本几何体的体积;四面体体积变换法;利用四面体的体积性质:()底面积相同的两个三棱锥体积之比等于其底面积的比;()高相同的两个三棱锥体积之比等于其底面积的比;()用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方.求多面体体积的常用技巧是割补法(割补成易求体积的多面体.补形:三棱锥三棱柱平行六面体;分割:三棱柱中三棱锥、四棱锥、三棱柱的体积关系是1:2:3和等积变换法(平行换点、换面)和比例(性质转换)法等.3.常见的特殊几何体的性质(1)平行六面体:底面是平行四边形的四棱柱.平行六面体直平行六面体长方体正四棱柱正方体;平行六面体的任何一个面都可以作为底面;平行六面体的对角线交于一点,并且在交点处互相平分;平行六面体的四条对角线的平方和等于各棱的平方和.(2)长方体:长方体的一条对角线的平方等于一个顶点上三条棱长的平方和;若长方体的体对角线与过同一顶点的三条棱所成的角分别为,则cos2+ cos2+cos2=1;若长方体的体对角线与过同一顶点的三侧面所成的角分别为则cos2+cos2+cos2=2.【考场经验分享】1注意特殊的四棱柱的区别:直四棱柱、正四棱柱、长方体、正方体、平行六面体、直平行六面体2棱台的各侧棱延长线交于一点是判断棱台的主要依据,两底面平行且是相似多边形3注意还台为锥的解题方法的运用,将台体还原为锥体可利用锥体的性质注意正棱锥中的四个直角三角形为:高、斜高及底面边心距组成一个直角三角形;高、侧棱与底面外接圆半径组成一个直角三角形;底面的边心距、外接圆半径及半边长组成一个直角三角形;侧棱、斜高及底边一半组成一个直角三角形4将几何体展开为平面图形时,要注意在何处剪开,多面体要选择一条棱剪开,旋转体要沿一条母线剪开.5与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图.6.关于组合体的考查一般放在压轴的选择或填空的位置,难度较大,需具有较强的画图能力和空间想象能力,尤其是与球相关的内切与外接问题,具有一定的规律和常用的结论,故总结常用的类型,形成解题的套路和模式.【新题预测演练】1.【2013届贵州天柱民中、锦屏中学、黎平一中、黄平民中四校联考】若棱长均为的正三棱柱内接于一个球,则该球的半径为 ( )A.B. C. D. 2.【北京市朝阳区2013届高三上学期期末理】在棱长为1的正方体中,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值是 A B C D3.【广西百所高中2013届高三年级第三届联考】如图,已知球O是棱长为1的正方体ABCDA1B1C1D1的内切球,则平面ACD1截球O的截面面积为( )ABCD4.【东北三省三校2013届高三3月第一次联合模拟考试】点在同一个球的球面上,若四面体体积的最大值为,则这个球的表面积为 ( )A3 BCD 【答案】C5.【河北省唐山市2012-2013学年度高三年级摸底考试】在三棱锥PABC中,PAPB=PC=,侧棱PA与底面ABC所成的角为60,则该三棱锥外接球的体积为 (A)(B) (C)4(D) 6.【天津市新华中学2013届高三上学期第三次月考数学试卷】已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形, 为球的直径,且,则此棱锥的体积为( )A. B. C. D. 7.【2012河北省名校名师俱乐部高三第二次调研考试】如图,设正方体的棱长为1,E、F分别是、的中点,则点A到平面EFDB的距离为A B C D18.【云南玉溪一中2013届第四次月考试卷】四面体中,则四面体外接球的表面积为( )A B C D 9.【2012河北省名校名师俱乐部高三第二次调研考试】已知矩形ABCD的顶点都在半径为R的球O的球面上,AB=6,棱锥O-ABCD的体积为,则球O的表面积为10.【2012-2013学年度河北省普通高中11月高三教学质量监测】已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为时,其高的值为( )A B C D11.【2012河北省名校名师俱乐部高三第二次调研考试】已知矩形ABCD的顶点都在半径为R的球O的球面上,AB=6,棱锥O-ABCD的体积为,则球O的表面积为A B C D12.【2012-2013学年度河北省普通高中高三11月教学质量监测】.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正棱柱的体积最大值时,其高的值为( )A B C D棱柱的体积最大。13.【2012-2013学年度河北省普通高中高三11月教学质量监测】已知ABCD为正方形,点P为平面ABCD外一点,二面角为,则点C到平面PAB的距离为 14.【云南师大附中2013届高三适应性月考卷(三)】正三棱锥ABCD内接于球O,且底面边长为,侧棱长为2,则球O的表面积为_ 15.【北京四中2012-2013年度第一学期高三年级期中】湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12 cm,深2 cm的空穴,则该球的半径是_cm,16.【2013年长春市高中毕业班第一次调研测试】若一个正四面体的表面积为,其内切球的表面积为,则_.17.【2013年长春市高中毕业班第一次调研测试】若一个正方体的表面积为,其外接球的表面积为,则_.18.【云南玉溪一中高2013届高三上学期第三次月考】 设动点在棱长为1的正方体的对角线上,记.当为钝角时,则的取值范围是 .(第17题)19.【河南中原名校20122013学年度第一学期期中联考】已知球Ol、O2的半径分别为l、r,体积分别为V1、V2,表面积分别为S1、S2,当时,的取值范围是 .20.【江苏省南通市2013届高三第二次调研测试】 若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为 cm21.【2013河北省名校名师俱乐部高三3月模拟考试】 在三棱柱中,侧棱垂直底面,BC=1,且三棱柱的体积为3,则三棱柱的外接球的表面积为 【2012-2013学年云南省昆明市高三(上)摸底调研测试】已知A,B,C,D四点在半径为的球面上,且,AD=BC=5,AB=CD,则三棱锥DABC的体积是22.【云南玉溪一中2013届第四次月考试卷】已知正三棱锥,点都在半径为的球面上,若两两互相垂直,则球心到截面的距离为_.23.【2013年乌鲁木齐地区高三年级第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长春市中石化2025秋招写作申论万能模板直接套用
- 营口市中石化2025秋招笔试模拟题含答案新材料与新能源岗
- 中国广电北京市2025秋招心理测评常考题型与答题技巧
- 广西地区中储粮2025秋招笔试模拟题及答案
- 2025年防雷检测考试题及答案
- 2025年医院呼吸考试题及答案
- 七台河市中储粮2025秋招综合管理岗高频笔试题库含答案
- 崇左市中石油2025秋招笔试模拟题含答案炼油设备技术岗
- 宜春市中石化2025秋招面试半结构化模拟题及答案油田工程技术岗
- 大唐电力常州市2025秋招采矿工程专业面试追问及参考回答
- 2025至2030中国大宗物资供应链行业发展趋势分析与未来投资战略咨询研究报告
- 胰岛素储存知识培训课件
- GB 46039-2025混凝土外加剂安全技术规范
- 2025至2030年中国卡丁车俱乐部行业市场调研分析及投资战略咨询报告
- 加油站职业健康危害因素分析
- 辽宁省沈阳市2025届高考语文模拟试卷(含答案)
- 危重症患者的疼痛管理
- 电力建设安全规程2025新版
- 2024年法考真题及答案解析
- 2025年苏州市中考数学试卷真题(含答案解析)
- 面向下一代互联网Web3.0可信数字身份基础设施白皮书(2024年)
评论
0/150
提交评论