




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整体叶轮数控加工的干涉检查和刀位修正 2007.01.29 关键词:叶轮,数控加工 摘要:为实现自主开发叶轮数控加工CAD/CAM 软件,提出了干涉检验及刀位修正算法。通过分析刀具与叶轮曲面的相对位置关系,将干涉分为三种类型。针对不同的干涉类型提出了相应的检查及修正方法。 最后给出仿真实例以验证该算法的有效性。 1 引言叶轮是透平机械的关键部件,其数控加工一直是研究的焦点。由于目前国内还没有比较成熟的且适应性强的CAD/CAM 系统,因此,绝大多数生产叶轮的厂家还依靠从国外进口的软件来完成其多坐标数控加工。进口软件不仅价格昂贵,要花费大量的外汇,而且软件是封闭的运行模块,其难点和一些关键问题的技术资料很难获得,因此,不能根据实际情况进行修改和开发,严重阻碍了新产品的研制。 近年随着机械、航天航空工业的迅速发展,对于提高叶轮类零件的加工质量和精度方面的要求愈益迫切,开发自主的CAD/CAM 软件势在必行,为此很多研究人员进行了这方面的研究工作,但对数控加工中的干涉检查这个关键性问题的研究所见资料甚少。北京航空航天大学工学吴明的博士学位论文叶轮、叶片类零件几何设计和数控加工采用离散三角片的方法进行了干涉分析,计算量较大,且研究不全面,对相邻叶片与刀具之间的干涉未作分析。在整体叶轮的数控加工过程中,刀具的工作空间受到叶轮结构的严格限制,干涉现象比加工自由曲面要复杂的多。本文针对整体叶轮的特点,在分析干涉类型的基础上,提出了一套适用于多坐标数控加工的干涉检查方法。1.轮毂 2.叶片 3.刀具图1 整体叶轮加工情况2 干涉类型整体叶轮是指轮毂和叶片在一个毛坯基体上。加工叶轮叶片曲面时,除了刀具与被加工叶片之间发生干涉外,由于相邻叶片间的空间较小,刀具极易与相邻叶片发生干涉。在实际加工中,叶片曲面是用坐标点的方式给出,计算刀位时需将曲面进行离散化处理。由于一般采用球头锥形铣刀,因此,可将曲面离散成点列。每个点的信息将以结构的形式给出,包含排列的序号、点的坐标、所在点的单位表面法矢,点之间以单项链表的方式给出。 本文所讨论的干涉是指啃切干涉,即刀具切入曲面上应该保留的部分。在用铣刀加工叶片中,将刀具置于接触点处曲面的切平面上的方位作为刀具的初始位置。如图1所示为铣刀加工整体叶轮的情况。从刀具与各叶片曲面间的相对位置关系的角度考虑,可将干涉分为三种类型:第一种为铣刀与自身叶片叶顶之间的干涉:第二种为铣刀与相邻叶片叶顶之间的干涉:第三种为铣刀与被加工区域周围邻近点之间的干涉。如果通过了这三种类型的干涉检查,就可以不必对整个叶片曲面的点进行干涉验证,从而大大减少计算量。 3 干涉检查及刀位调整1. 刀具与自身叶片叶顶之间的干涉 叶轮曲面采用NURBS方法离散后可用S(u,v)=x(u,v),y(u,v),z(u,v)来表示,u(0,1),v(0,1)。因此,这类干涉只需判断叶片曲面叶顶所对应的v=0的那条参数线上的各点到刀具轴线之间的距离e,如图2所示。若距离大于刀具的有效半径,则不发生干涉:若距离小于刀具的有效半径,则发生干涉。所谓的刀具有效半径,指的是相对于叶顶处的刀具半径。距离e为 e=( x0-x1y0-y12+y0-y1z0-z12+z0-z1x0-x1 2)axayayazazax(1)2. 式中,A(x0,y0,z0)为刀具的球心点坐标:B(x1,y1,z1)为叶片叶顶参数点坐标:(ax,ay,az)为单位刀轴矢量a的三个坐标分量。 3. 刀具有效半径为 R0= r0+ |AB|cosqtanb (2)4. 式中:r0为刀具球头半径:b为刀具的半锥角:cosq=ABa/|AB|。 5. 刀具与相邻叶片叶顶之间的干涉 这种类型干涉情况的判断与第一种干涉情况的判断相似。相邻叶片叶顶的参数曲线可通过将被加工叶片的叶顶参数点顺时针或逆时针旋转角度a(a=360m,m为叶片数)得到。图2 第三种干涉检测6. 刀具与被加工区域周围邻近点之间的干涉 理论上,这种类型的干涉应检测刀具所在圆锥面与刀具所覆盖区域内的曲面的交点的存在性,但这样计算比较复杂,计算量也较大。为了简便起见,采用以下算法。 如图2所示,作刀具的切平面,使之与刀具轴线矢量之间的交角为刀具半锥角,得到两个切平面F1、F2,选其中与叶片表面相接触的一个平面F1,求此平面与刀具覆盖的离散点的有向距离d,判断d的符号,即可判断刀具是否与叶片曲面发生干涉。 所作平面F1的单位法矢n1(A,B,C)可通过将刀轴矢量a绕(an)旋转(90-b)角度得到,即 n1= cos(90- b)a+ sin(90- b)n (3)7. 则平面F1的方程为 Ax+ By+ Cz= 1(4)8. 叶片曲面上任意一点(xs,ys,zs)到切平面的有向距离d可由式(5)求得 d= Axs+ Bys+ Czs- 1 (5)图3 干涉粗判9. 通过计算式(5)就可以求得d的符号。若d同号,且大于零,则没有发生干涉:若d异号,则发生干涉,d0为干涉点。 为了进一步减少计算量,在进行上述计算之前,先进行粗判。粗判的目的是找出叶片曲面与刀具之间的覆盖区域。在覆盖区域内,才有可能发生干涉。由于已经通过了第一种类型的干涉检查,我们在计算时,又将覆盖区域进一步减小。 将刀具和被加工叶片曲面投影于xoz平面上。以刀具球头直径为边长构造刀具的包容正方形,并分别以叶片曲面的最大和最小x值、z值构造叶片曲面的包容长方形,如图3所示。通过观察正方形与长方形之间的相对位置关系,可以确定叶片曲面上的点是否需要进一步的检查。 10. 刀位调整 通过上述方法检查出干涉,必须对刀具刀轴进行调整。下面对第三种干涉进行消除。根据式(5),可找出最大干涉距离为 max|d|= max|Axs+ Bys+ Czs- 1|(6)11.图4 干涉仿真实例12. 为消除干涉,刀具应在初始切平面内绕刀具球心点旋转q角度,使刀轴更加偏离被加工的叶片曲面。q角为 q= arcsin(max|d|/d1) (7)13. 式中d1为最大干涉点与刀具球心点之间的距离。 14. 这样调整后的刀轴矢量为 anew=acosqnsinq (8)15. 上式中,若q角绕(an)顺时针转动取“+”号,逆时针旋转取“-”号。 第一类干涉与第三类干涉的调整方法相同,都应使刀轴更加偏离曲面。而如为第二类干涉,则应使刀轴靠近曲面。刀轴角度调整后,要重新检查干涉,直到不发生干涉为止。 上述提出的干涉检查法,已用于我们开发的“专用叶轮CAD/CAM软件”系统中。图4是两个仿真实例。图4a中的刀位是通过刀位计算得到的,深颜色表示干涉区域。图4b是采用上述算法消除干涉后的刀位。铝铸件常见缺陷及分析 2006.12.28 来源:国际建材设备 关键词:铝铸件 一 氧化夹渣缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现。 产生原因:1.炉料不清洁,回炉料使用量过多;2.浇注系统设计不良;3.合金液中的熔渣未清除干净;4.浇注操作不当,带入夹渣;5.精炼变质处理后静置时间不够。防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低;2.改进浇注系统设计,提高其挡渣能力;3.采用适当的熔剂去渣;4.浇注时应当平稳并应注意挡渣;5.精炼后浇注前合金液应静置一定时间。 二 气孔气泡缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔、气泡在X光底片上呈黑色。产生原因:1.浇注合金不平稳,卷入气体;2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等);3.铸型和砂芯通气不良;4.冷铁表面有缩孔;5.浇注系统设计不良。防止方法:1.正确掌握浇注速度,避免卷入气体;2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量;3.改善(芯)砂的排气能力;4.正确选用及处理冷铁;5.改进浇注系统设计。三 缩松缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状,严重的呈丝状。缩松可通过X光、荧光低倍断口等检查方法发现。产生原因:1.冒口补缩作用差;2.炉料含气量太多;3.内浇道附近过热;4.砂型水分过多,砂芯未烘干;5.合金晶粒粗大;6.铸件在铸型中的位置不当;7.浇注温度过高,浇注速度太快。防止方法:1.从冒口补浇金属液,改进冒口设计;2.炉料应清洁无腐蚀;3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用;4.控制型砂水分,和砂芯干燥;5.采取细化品粒的措施;6.改进铸件在铸型中的位置降低浇注温度和浇注速度。四 裂纹缺陷特征: 1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现;2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生。产生原因:1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊;2.砂型(芯)退让性不良;3.铸型局部过热;4.浇注温度过高;5.自铸型中取出铸件过早;6.热处理过热或过烧,冷却速度过激。防止方法:1.改进铸件结构设计,避免尖角,壁厚力求均匀,圆滑过渡;2.采取增大砂型(芯)退让性的措施;3保证铸件各部分同时凝固或顺序凝固,改进浇注系统设计;4.适当降低浇注温度;5.控制铸型冷却出型时间;6.铸件变形时采用热校正法;7.正确控制热处理温度,降低淬火冷却速度。西门子840D数控系统的应用 2006.12.25 关键词:西门子,840D,数控系统 0 引言在制造业现代化的今天,生产的高效率和产品的高质量要求使得一些高精度数控机床和高性能数控系统应运而生,同时也使许多普通机床和传统工艺难以解决的问题变得相对简单了一些,使生产效率和产品质量也有很大程度的保证。 我公司的玻璃数控钻孔机的数控系统采用了西门子公司的SINUMERIK 840D系统,在使用过程中高精度的产品质量和极低的故障率(主要取决于清晰的可视化报警信息,使得故障能够迅速排除)赢得了客户对此系统的信任。下面对SINUMERIK 840D系统和驱动的执行机构机械结构介绍如下:1 设备机械结构的组成:此设备用于玻璃的钻孔加工,如图1所示,整个机加上有两根平行的横梁,两对钻轴分别安装在由4个位置电机带动可左右移动的固定板上,每块固定板分别由固定在横梁上下的两个直线导轨滑块与固定板连接在一起,钻轴的左右移动由固定在固定板上的位置电机M1,M2,M3,M4通过齿轮齿条带动钻轴沿Y方向左右移动。每个钻轴的内部由两个电机组成,靠近钻头的电机(M7,M9,M11,M13)带动钻头旋转。钻轴的另外一个电机(M6,M8,M10,M12)通过电机内部的丝杠螺母副将电机转子的旋转运动转换为轴向升降运动,带动钻头作上下进给运动,即Z向运动。玻璃定位时首先由X方向定位装置(此装置在图中未画出,其方向为垂直于纸面的方向,装置的运动由X方向位置电机M5驱动)将玻璃推至准确位置,各钻轴沿Y方向移动至正确位置,下钻头上升,开始钻玻璃的下平面,钻至设定的深度,下钻头退回,然后上钻头下降钻玻璃的上平面,钻至设定的深度后退回。此设备可同时对两个孔进行加工。图1 机械结构组成图2 SINUMERIK 840D数控系统2.1 硬件部分:SINUMERIK 840D采用特殊的三CPU结构:人机通信CPU、数字控制CPU(NC-CPU)和可编程逻辑控制器CPU(PLC-CPU)。如图2所示MMC-CPU在OP012人机界面内,NC-CPU和PLC-CPU集成在NCU572内。图2 840D数控系统构成2.1.1 NCU数字控制部件以NCU572为核心,电源模块采用SIMODRIVER 611D,电源模块主要为NCU和给611D数字驱动提供控制和动力电源,产生母线电压,同时监测电源和模块的状态。后面有三个进给模块通过驱动总线接口与NCU572挂接,数控和驱动的接口信号为数字量,分别驱动两对钻头的Y方向位置电机(M1,M2,M3,M4)和X方向位置电机M5。同时NCU572又通过PROFIBUS现场总线与OP012人机界面、S7-300PLC及控制电机转速的变频器连接在一起。2.1.2 MMC人机通讯人机通讯是数控系统和人进行信息交流的通道。包括: OP(Operation Panel)和MMC。2.1.2.1 OP012 操作面板OP(Operation Panel)单元由一个12.1TFT显示屏和一个NC键盘组成。人机界面OP012采用Windows 95作为操作平台,使操作简单、灵活,易掌握。生产过程中的各种生产数据的变更和各种现场数据的监控,在OP012上清晰可见,其软件内容丰富功能强大。 2.1.2.2 MMC计算机MMC实际上是一台计算机。它有自己独立的CPU,还可以带硬盘,带软驱。OP单元正是这台计算机上的显示器,而西门子MMC的控制软件也在这台计算机中。2.1.3 PLC模块SINUMERIK 840D数控系统的PLC部分使用的是西门子SIMATIC S7-300的软件及模块。其电源由西门子SITOP电源(40A)提供,接口模块IM361是用于级之间的互连。它通过PROFIBUS现场总线与NCU572连接。在IM361右侧为信号模块,信号模块是用于PLC输入/输出的模块,有输入型和输出型两种。即输入模块SM321和输出模块SM322。PLC的CPU与NC的CPU是集成在NCU中的。设备上的各种光电开关、行程开关的输入和电磁阀、接触器的输出信号分别与输入和输出模块相连,控制各种外部执行元件的协调动作。2.1.4 各部分相互连接NCU数控单元是CNC控制部件的核心,它与MMC、伺服电源模块、进给伺服驱动装置和伺服电机连接。本系统采用全闭环控制,伺服电机采用1FK型内置编码器电机,通过伺服电机编码器作为位置检测元件,将位置信号反馈至数字驱动模块(611D)的位置接口X411,构成全闭环控制系统。实现了对玻璃钻孔孔位的精确定位控制。在钻孔时为确保上下钻头的同心度(即上下钻头中心重合),在四个位置电机移动的Y方向上设置了四个行程开关,作为四个钻轴的参考点位置。在打开机器电源后,需要对各钻轴进行参考点复位动作,即给各钻轴的编码器赋值(刚打开电源时各编码器的值均为零。在进行参考点复位时,钻轴运行到行程开关的位置时,编码器的值变成系统预先设定的参考点的值)。当上下钻头出现位置偏差时,在系统的软件内还设置了误差补偿量,通过调整补偿量可以很方便的将偏差纠正过来。2.1.5 其他硬件部分如前所述,每一个钻轴内部由两个电机组成,即钻头的旋转和轴向进给。4台轴向进给的电机由4台SIEMENS MASTERDRIVE MC变频器分别控制(每个钻轴一个),变频器的控制信号来自NCU572,通过PROFIBUS现场总线传递。4个钻轴的旋转电机的速度由一台SIEMENS MM440变频器控制,各电机旋转的启动停止分别由各自的接触器(在变频器和电机之间)单独控制。变频器的控制信号也是来自NCU572,通过PROFIBUS现场总线传递。钻头的进给速度和旋转速度均可根据玻璃厚度和工艺条件在MMC内选择。在进给电机尾部有内置编码器来测量钻头进给深度。内部有原点光电开关作为钻头的原点(参考点)位置。2.1.6 数控系统与PC的连接因PLC-CPU和NC-CPU集成在NCU572内,在进行PLC和NC程序调试时,可将PC与NCU572连接,即可对程序进行修改和调试。2.2 软件部分:SINUMERIK 840D软件系统包括4大类软件:MMC软件系统、NC软件系统、PLC软件系统和通信及驱动接口软件。 2.2.1 MMC软件系统 在MMC103系统上带有10GB的硬盘,内装有基本输入、输出系统(BIOS),DR-DOS内核操作系统、Windows95操作系统,以及串口、并口、鼠标和键盘接口等驱动程序,支撑SINUMERIK与外界MMC-CPU、PLC-CPU、NC-CPU之间的相互通信及任务协调。 2.2.2 NC软件系统 NC软件系统包括下列内容: 2.2.2.1 NCK数控核初始引导软件 该软件固化在EPROM中。 2.2.2.2 NCK数控核数字控制软件系统 它包括机器数据和标准的循环子系统,用户必须理解每个循环程的参数含义才能进行调用。 2.2.2.3 SINUMERIK 611D驱动数据 它是指SINUMERIK 840D数控系统所配套使用的SIMODRIVE 611D数字式驱动系统的相关参数。 2.2.3 PLC软件系统 PLC软件系统包括PLC系统支持软件和PLC程序。 2.2.3.1 PLC系统支持软件 它支持SINUMERIK 840D数控系统内装的CPU315-2DP型可编程逻辑控制器的正常工作,该程序固化在NCU内。 2.2.3.2 PLC程序它包含基本PLC程序和用户PLC程序两部分。 2.2.4 通信及驱动接口软件 它主要用于协调PLC-CPU、NC-CPU和MMC-CPU三者之间的通信。3 结束语SINUMERIK 840D,它在复杂的系统平台上,通过系统设定而适于各种控制技术。840D与SINUMERIK_611数字驱动系统和SIMATIC S7可编程控制器一起,构成全数字控制系统,它不仅仅应用在钻孔机上,而是应用于机械加工设备及各行各业的设备控制系统中,西门子840D数控系统是当今世界较为先进控制系统,其体积小,功能强,程序设计简单,维护方便,价格低廉等特点,倍受用户的青睐。其全数字化的系统、革新的系统结构、更高的控制品质、更高的系统分辨率以及更短的采样时间,确保了一流的工件质量。同时也使它在各行各业的数控设备中得到了广泛的应用高速加工与高效加工的完美结合 2006.07.10 来源:中国机经网 关键词:高速加工,高效加工 高速加工是相对传统加工系统而言的,它包含两层含义:高主轴转速和高进给量,即利用高性能的机床,以通常意义上的几倍甚至几十倍的加工速度来实现对工件加工的高精度、高效率,最终达到提高生产率的目的。然而,选用了高速加工中心是否意味着生产效率就一定能够得到提高吗?答案并非如此。 10年前,加工中心的快速移动速度18m/min、换刀速度10s,其性能与今日的加工中心是不可同日而语的。那时,使用加工中心组成的柔性加工线的成本也是非常昂贵的。由于早期的加工中心的刀具和刀库在结构上的问题还未得到完全解决,在某些工序,特别是对关键孔的加工工序上还必须使用专机。 随着科技的不断进步,新式刀具层出不穷,上述问题现在已基本得到解决。主轴转速在12000r/min以上的现代化高速加工中心彼彼皆是,完全由加工中心组成的柔性生产线也得到了广泛应用。然而这时,又一个问题摆在了人们的面前:在什么情况下选用什么样的加工中心呢? 本文例举的加工实例就三台性能不同的机床分别在粗加工和半精加工、精加工工况下,加工不同材质工件时的性能进行了比较和分析。 粗加工和半精加工 在柔性加工中,粗加工机床为最终的精加工提供稳定的毛坯,因此,粗加工工序是柔性加工线中非常重要的一个组成部分。选用粗加工工序的原则是:根据不同的加工材料选用刚性相符合的加工中心。然而,现在仍有相当多的发动机生产厂没有重视到粗加工工序应该选用何种机床。 目前,国内发动机厂使用的发动机缸体大多采用铸铁结构。与进口毛坯相比较,国产毛坯加工余量较大且不均匀,材质也不稳定。因此,国内发动机厂在该工序上使用的机床应该比国外相同工序上使用的机床要求相对高一些。 加工实例 以完成4108柴油机粗镗汽缸孔为例: 缸体材料:HT250 缸孔直径:110mm 单边余量:5mm 加工部位:粗铣顶面、粗铣底面、粗铣前后端面、粗镗汽缸孔选用A、B、C三种不同性能的机床进行对比试验,机床的主要参数如表1所示。 加工工序可选用的刀具材料如下: 1、 硬质合金涂层刀片:刀片韧性较好、安全可靠、线速度较低、价格便宜,适用于品质较差的毛坯。 2、 金属陶瓷刀片:刀片韧性较差、易崩刃、线速度较高、价格中等,适用于品质较好的毛坯。 由于国内毛坯质量不稳定,建议选用硬质合金涂层刀片;查询切削手册,Vc为150240m/min,建议选用180m/min的进给速度;从工艺上决定粗加工汽缸孔时的主轴转速为520 r/min。 观察在主轴转速为520 r/min时A、B、C三种机床的性能,表2所示为其对比情况,由此分析可以得出以下结论: A机床主轴转速在400500 r/min时,不能提供适合粗加工所需要的功率和扭矩。该机床不适合用于粗加工,但此机床可用于小平面和油孔的加工。 B机床可以满足材质较好毛坯的粗加工和半精加工的要求,但须再提高机床主轴转速才可能获得较大的功率,且扭矩已不能再提高。采用此机床,可选用45个刀片的镗刀。主轴转速的提高将导致刀具寿命的降低,加大刀片破碎的机率。 C机床的主轴转速在300600 r/min时,可以提供足够大的功率和扭矩,满足粗加工的需要。对于粗加工和半精加工,此机床具有较强的适应能力。此加工工序可选用57个齿的镗刀。 在粗铣大面工序中,如顶面、底面、前后端面,通常会采用直径为?60200mm的盘铣刀。若选用C机床,将得到非常稳定的加工过程;若选用B机床,只有通过提高主轴转速降低每齿进给的方式才能提高进给,但是可能会让用户加大对刀具的投入。 在毛坯质量较好的情况下,B机床的表现最为出色。它不仅可以加工铸铁缸体,还可以兼容铸铝缸体的加工。机床具有较大的柔性,在欧洲,此类机床的使用十分普及,而A机床则是专为有色金属的加工而设计的。 精加工 主轴是加工中心的心脏,采用强劲的主轴是选用高刚性加工工序的关键。精加工应选用主轴刚性好、精度稳定性好的机床。 那么,精加工应该选用什么刀
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咸阳经开城市发展集团有限公司招聘考试真题2024
- 达州市教育局部属公费师范生招聘考试真题2024
- 高血压健康管理试题(带答案)
- 劳动合同与社会保险法律制度测试试题(附答案)
- 初级美发师模拟试题及答案
- 2025年度隧道盾构施工项目合同
- 2025年度清洁煤炭绿色采购与供应链管理合同
- 2025保密协议范本:物流行业货物信息保密
- 2025年美妆行业个性化定制服务模式下的行业规范研究报告
- 2025版绿色建筑节能改造合同标准文本
- 2025年科研项目经理专业知识考试题目答案解析
- 2025广东肇庆市怀集县卫生事业单位招聘102人笔试模拟试题及答案解析
- 青马考试题目及答案
- 算力中心计算任务优化方案
- 劳务派遣工作知识培训课件
- AutoCAD电气工程制图 课件 项目1 低压配电柜的绘制与识图
- 无人机反制设备原理课件
- 2024年全国工会财务知识大赛备赛试题库500(含答案)
- 《采购4 0 采购系统升级 降本 增效实用指南 第2版 》读书笔记思维导图PPT模板下载
- 《卷烟原料配方设计》配套教学课件
- 《新能源汽车驱动电机系统检测与维修习题册》 习题参考答案(劳动)
评论
0/150
提交评论