03【数学】高考数学基础知识总结:第三章 数列.doc_第1页
03【数学】高考数学基础知识总结:第三章 数列.doc_第2页
03【数学】高考数学基础知识总结:第三章 数列.doc_第3页
03【数学】高考数学基础知识总结:第三章 数列.doc_第4页
03【数学】高考数学基础知识总结:第三章 数列.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学第三章-数列考试内容:数列等差数列及其通项公式等差数列前n项和公式等比数列及其通项公式等比数列前n项和公式考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题知识回顾:1. 等差数列与等比数列等差数列等比数列定义递推公式;通项公式()中项()()前项和重要性质1. 等差、等比数列:等差数列等比数列定义通项公式=+(n-1)d=+(n-k)d=+-d求和公式中项公式A= 推广:2=。推广:性质1若m+n=p+q则 若m+n=p+q,则。2若成A.P(其中)则也为A.P。若成等比数列 (其中),则成等比数列。3 成等差数列。成等比数列。4 , 5看数列是不是等差数列有以下三种方法:2()(为常数).看数列是不是等比数列有以下四种方法:(,)注:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.ii. (ac0)为a、b、c等比数列的充分不必要.iii. 为a、b、c等比数列的必要不充分.iv. 且为a、b、c等比数列的充要.注意:任意两数a、c不一定有等比中项,除非有ac0,则等比中项一定有两个.(为非零常数).正数列成等比的充要条件是数列()成等比数列.数列的前项和与通项的关系:注: (可为零也可不为零为等差数列充要条件(即常数列也是等差数列)若不为0,则是等差数列充分条件).等差前n项和 可以为零也可不为零为等差的充要条件若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件. 非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. 等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;若等差数列的项数为2,则;若等差数列的项数为,则,且, . 3. 常用公式:1+2+3 +n = 注:熟悉常用通项:9,99,999,; 5,55,555,.4. 等比数列的前项和公式的常见应用题:生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:=.分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.5. 数列常见的几种形式:(p、q为二阶常数)用特证根方法求解.具体步骤:写出特征方程(对应,x对应),并设二根若可设,若可设;由初始值确定.(P、r为常数)用转化等差,等比数列;逐项选代;消去常数n转化为的形式,再用特征根方法求;(公式法),由确定.转化等差,等比:.选代法:.用特征方程求解:.由选代法推导结果:.6. 几种常见的数列的思想方法:等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:一是求使,成立的值;二是由利用二次函数的性质求的值.如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n2的任意自然数,验证为同一常数。(2)通项公式法。(3)中项公式法:验证都成立。3. 在等差数列中,有关Sn 的最值问题:(1)当0,d0时,满足的项数m使得取最大值. (2)当0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。(三)、数列求和的常用方法1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 2.裂项相消法:适用于其中 是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。3.错位相减法:适用于其中 是等差数列,是各项不为0的等比数列。 4.倒序相加法: 类似于等差数列前n项和公式的推导方法.5.常用结论1): 1+2+3+.+n = 2) 1+3+5+.+(2n-1) = 3) 4) 5) 6) 基础训练一、选择题:1数列1, 的一个通项公式是Aan(1)n Ban(1)n Can(1)n Dan(1)n 2设Sn是等差数列an的前n项和,已知S636,Sn324,Sn6144,则nA15B16C17D183在等比数列an中,S41,S83,则a17a18a19a20的值是A14 B16 C18 D204已知9,a1,a2,1四个实数成等差数列,9,b1,b2,b3,1五个实数成等比数列,则b2(a2a1)A8 B8 C8 D5设等差数列an的前n项的和为Sn,若a10,S4S8,则当Sn取得最大值时,n的值为A5 B6 C7 D86已知数列an的通项公式anlog2,设其前n项和为Sn,则使Sn5成立的正整数nA有最小值63 B有最大值63C有最小值31 D有最大值317设数列an是公比为a(a1),首项为b的等比数列,Sn是前n项和,对任意的nN ,点(Sn ,Sn+1)在A直线yaxb上 B直线ybxa上C直线ybxa上 D直线yaxb上89北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数(参考数据1.141.46,1.151.61)A10% B165% C168% D20%10已知a1,a2,a3,a8为各项都大于零的数列,则“a1a8a4a5”是“a1,a2,a3,a8不是等比数列”的A充分且必要条件 B充分但非必要条件 C必要但非充分条件 D既不充分也不必要条件二、填空题:把答案填在横线上11已知 我们把使乘积a1a2a3an为整数的数n叫做“劣数”,则在区间(1,2004)内的所有劣数的和为 12已知集合,则A6中各元素的和为 13等差数列an中,a15,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是第 项14若abc,bca,cab,abc依次成等比数列,公比为q,则q3q2q 15若数列为等差数列,则数列 也为等差数列,类比上述性质,相应地,若数列cn是等比数列且,则有数列dn (nN)也是等比数列三、解答题:解答应写出文字说明,证明过程或演算步骤1617已知f(x1)x24,等差数列an中,a1f(x1),a2 ,a3f(x)求:x的值;数列an的通项公式an;a2a5a8a2618(本小题满分14分)正数数列an的前n项和为Sn,且2(1) 试求数列an的通项公式;(2)设bn,bn的前n项和为Tn,求证:Tn19(本小题满分14分)已知函数f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论