



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Fisher线性判别式前面讲过的感知器准则、最小平方和准则属于用神经网络的方法解决分类问题。下面介绍一种新的判决函数分类方法。由于线性判别函数易于分析,关于这方面的研究工作特别多。历史上,这一工作是从R.A.Fisher的经典论文(1936年)开始的。我们知道,在用统计方法进行模式识别时,许多问题涉及到维数,在低维空间行得通的方法,在高维空间往往行不通。因此,降低维数就成为解决实际问题的关键。Fisher的方法,实际上涉及维数压缩。如果要把模式样本在高()维的特征向量空间里投影到一条直线上,实际上就是把特征空间压缩到一维,这在数学上容易办到。另外,即使样本在高维空间里聚集成容易分开的群类,把它们投影到一条任意的直线上,也可能把不同的样本混杂在一起而变得无法区分。也就是说,直线的方向选择很重要。在一般情况下,总可以找到某个最好的方向,使样本投影到这个方向的直线上是最容易分得开的。如何找到最好的直线方向,如何实现向最好方向投影的变换,是Fisher法要解决的基本问题。这个投影变换就是我们寻求的解向量。1线性投影与Fisher准则函数在两类问题中,假定有个训练样本其中个样本来自类型,个样本来自类型,。两个类型的训练样本分别构成训练样本的子集和。令:, (4.5-1)是向量通过变换得到的标量,它是一维的。实际上,对于给定的,就是判决函数的值。由子集和的样本映射后的两个子集为和。因为我们关心的是的方向,可以令,那么就是在方向上的投影。使和最容易区分开的方向正是区分超平面的法线方向。如下图:图中画出了直线的两种选择,图(a)中,和还无法分开,而图(b)的选择可以使和区分开来。所以图(b)的方向是一个好的选择。下面讨论怎样得到最佳方向的解析式。各类在维特征空间里的样本均值向量:, (4.5-2)通过变换映射到一维特征空间后,各类的平均值为:, (4.5-3)映射后,各类样本“类内离散度”定义为:, (4.5-4)显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离散度越小越好。因此,定义Fisher准则函数: (4.5-5)使最大的解就是最佳解向量,也就是Fisher的线性判别式。2求解从的表达式可知,它并非的显函数,必须进一步变换。已知:,, 依次代入(4.5-1)和(4.5-2),有:, (4.5-6)所以: (4.5-7)其中: (4.5-8)是原维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大小,因此,越大越容易区分。将(4.5-6)和(4.5-2)代入(4.5-4)式中: (4.5-9)其中:, (4.5-10)因此: (4.5-11)显然: (4.5-12)称为原维特征空间里,样本“类内离散度”矩阵。是样本“类内总离散度”矩阵。为了便于分类,显然越小越好,也就是越小越好。将上述的所有推导结果代入表达式: 广义Rayleigh商 (4.5-13)式中和皆可由样本集计算出。用lagrange乘子法求解的极大值点。令分母等于非零常数,也就是:。定义lagrange函数: (4.5-14)对求偏导数:令得到: (4.5-15)从上述推导(4.5-10)(4.5-12)可知,是维特征的样本协方差矩阵,它是对称的和半正定的。当样本数目时,是非奇异的,也就是可求逆。则: (4.5-16)问题转化为求一般矩阵的特征值和特征向量。令,则是的特征根,是的特征向量。 (4.5-17)式中:是一个标量。所以总是在方向上。将(4.5-17)代入到(4.5-15),可以得到:其中,是一个比例因子,不影响的方向,可以删除,从而得到最后解: (4.5-18)就使取得最大值,可使样本由维空间向一维空间映射,其投影方向最好。是一个Fisher线性判断式。讨论: 如果,则样本线性不可分。 ,未必线性可分。 不可逆,未必不可分。3.Fisher算法步骤由Fisher线性判别式求解向量的步骤: 把来自两类的训练样本集分成和两个子集和。 由,计算。 由计算各类的类内离散度矩阵,。 计算类内总离散度矩阵。 计算的逆矩阵。 由求解。这一节所研究的问题针对确定性模式分类器的训练,实际上,Fisher的线性判别式对于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共交通电梯购销及智能化改造合同
- 2025年度离婚协议范文子女抚养费用计算与支付
- 2025版光伏发电项目施工安装协议范本
- 2025年度创新亲情房产无偿赠与协议
- 2025版外墙面砖装饰分包合同
- 2025年度橱柜工程安装与智能家居系统集成协议
- 2025年度农产品质量安全第三方检测服务合同
- 2025版铁路货运集装箱物流信息化服务合同下载
- 2025版水泥行业研发与技术转移合作协议
- 2025年度绿色建筑示范项目保证金协议
- 《实践论》《矛盾论》导读课件
- 小学生防欺凌课件
- 2025-2030年中国生物质能发电行业市场深度调研及投资策略与投资前景预测研究报告
- 2025新高考英语Ⅱ卷真题听力原文
- 2025年中国数位式照度计市场调查研究报告
- 江苏省扬州市2023-2024学年高一下学期6月期末考试英语试题(含答案)
- T/CIE 167-2023企业级固态硬盘测试规范第3部分:可靠性测试
- 2025至2030年中国珠光颜料行业投资前景及策略咨询研究报告
- 遗址公园建设项目可行性研究报告
- 2025如何审查合同文件中的要约与要约邀请的区别
- 项目走账协议书
评论
0/150
提交评论