




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 概率和概率分布2.1 做这样一个试验,取一枚五分硬币,将图案面称为A,文字面称为B。上抛硬币,观察落下后是A向上还是B向上。重复10次为一组,记下A向上的次数,共做10组。再以100次为一组,1 000次为一组,各做10组,分别统计出A的频率,验证2.1.3的内容。答:在这里用二项分布随机数模拟一个抽样试验,与同学们所做的抽样试验并不冲突。以变量Y表示图向上的次数,n表示重复的次数,m表示组数,每次落下后图向上的概率1/2。SAS程序如下,该程序应运行3次,第一次n10,第二次n100,第三次n1000。options nodate;data value;n=10;m=10;phi=1/2;do i=1 to m;retain seed 3053177;do j=1 to n;y=ranbin(seed,n,phi);output;end;end;data disv;set value;by i;if first.i then sumy=0;sumy+y;meany=sumy/n;py=meany/n;if last.i then output;keep n m phi meany py;run;proc print;title binomial distribution: n=10 m=10;run;proc means mean;var meany py;title binomial distribution: n=10 m=10;run;以下的三个表是程序运行的结果。表的第一部分为每一个组之Y的平均结果,包括平均的频数和平均的频率,共10组。表的第二部分为10组数据的平均数。从结果中可以看出,随着样本含量的加大,样本的频率围绕0.5做平均幅度越来越小的波动,最后稳定于0.5。binomial distribution: n=10 m=10OBS N M PHI MEANY PY1 10 10 0.5 5.7 0.572 10 10 0.5 4.5 0.453 10 10 0.5 5.1 0.514 10 10 0.5 6.1 0.615 10 10 0.5 6.1 0.616 10 10 0.5 4.3 0.437 10 10 0.5 5.6 0.568 10 10 0.5 4.7 0.479 10 10 0.5 5.2 0.5210 10 10 0.5 5.6 0.56binomial distribution: n=10 m=10Variable Mean-MEANY 5.2900000PY 0.5290000-binomial distribution: n=100 m=10OBS N M PHI MEANY PY1 100 10 0.5 49.71 0.49712 100 10 0.5 49.58 0.49583 100 10 0.5 50.37 0.50374 100 10 0.5 50.11 0.50115 100 10 0.5 49.70 0.49706 100 10 0.5 50.04 0.50047 100 10 0.5 49.20 0.49208 100 10 0.5 49.74 0.49749 100 10 0.5 49.37 0.493710 100 10 0.5 49.86 0.4986binomial distribution: n=100 m=10Variable Mean-MEANY 49.7680000PY 0.4976800-binomial distribution: n=1000 m=10OBS N M PHI MEANY PY1 1000 10 0.5 499.278 0.499282 1000 10 0.5 499.679 0.499683 1000 10 0.5 499.108 0.499114 1000 10 0.5 500.046 0.500055 1000 10 0.5 499.817 0.499826 1000 10 0.5 499.236 0.499247 1000 10 0.5 499.531 0.499538 1000 10 0.5 499.936 0.499949 1000 10 0.5 500.011 0.5000110 1000 10 0.5 500.304 0.50030binomial distribution: n=1000 m=10Variable Mean-MEANY 499.6946000PY 0.4996946-2.2 每个人的一对第1号染色体分别来自祖母和外祖母的概率是多少?一位男性的X染色体来自外祖父的概率是多少?来自祖父的概率呢?答: (1)设A为一对第1号染色体分别来自祖母和外祖母的事件,则(2)设B为男性的X染色体来自外祖父的事件,则(3)设C为男性的X染色体来自祖父的事件,则2.3 假如父母的基因型分别为IAi和IBi 。他们的两个孩子都是A型血的概率是多少?他们生两个O型血女孩的概率是多少?答:父:母:2.4 白化病是一种隐性遗传病,当隐性基因纯合时(aa)即发病。已知杂合子(Aa)在群体中的频率为1 / 70,问一对夫妻生出一名白化病患儿的概率是多少?假如妻子是白化病患者,她生出白化病患儿的概率又是多少?答:(1)已知 所以(2)已知 所以2.5 在图23中,III1为Aa个体,a在群体中的频率极低,可排除a多于一次进入该系谱的可能性,问III2亦为a的携带者的概率是多少?答:设:事件A:III1含a,事件B:II2含a,事件C:I3含a,事件D:II2含a,事件E:III2含a,事件C:I4含a,图 23同理可得:故III2含a总的概率为:2.6 一个杂合子AaBb自交,子代基因型中有哪些基本事件?可举出哪些事件?各事件的概率是多少?答:1共有16种基因型,为16个基本事件。AABBAAbBaABBaAbBAABbAAbbaABbaAbbAaBBAabBaaBBaabBAaBbAabbaaBbaabb2可举出的事件及其概率:A1: 包含四个显性基因 = AABBA2: 包含三个显性基因 = AABb, AAbB, AaBB, aABBA3: 至少包含三个显性基因 = AABb, AAbB, AaBB, aABB, AABBA4: 包含两个显性基因 = AaBb, AabB, aABb, aAbB, AAbb, aaBBA5: 至少包含两个显性基因 = AaBb, AabB, aABb, aAbB, AAbb, aaBBAABb, AAbB, AaBB, aABB, AABBA6: 包含两个不同的显性基因 = AaBb, AabB, aABb, aAbBA7: 包含两个相同的显性基因 = AAbb, aaBB2.7 一对表型正常的夫妻共有四名子女,其中第一个是隐性遗传病患者。问其余三名表型正常的子女是隐性基因携带者的概率是多少?答:样本空间W = AA, Aa, aA2.8 自毁容貌综合征是一种X连锁隐性遗传病,图24是一个自毁容貌综合征患者的家系图。该家系中III2的两位舅父患有该病,III2想知道她的儿子患该病的概率是多少?(提示:用Bayes定理计算II5在已生四名正常男孩的条件下是携带者的条件概率)图 24答:若IV1是患者,III2必定是携带者,II5亦必定是携带者。已知II2和II3为患者,说明I2为杂合子,这时II5可能是显性纯合子也可能是杂合子。称II5是杂合子这一事件为A1,II5是显性纯合子这一事件为A2,则: 设II5生4名正常男孩的事件为事件B,则II5为杂合子的条件下,生4名正常男孩 (III3至III6)的概率为:II5为显性纯合子的条件下,生4名正常男孩的概率为:将以上各概率代入Bayes公式,可以得出在已生4名正常男孩条件下,II5为杂合子的概率:由此得出III2为杂合子的概率:P(III2为杂合子)以及III2的儿子(IV1)为受累者的概率:P(IV1为患者)2.9 Huntington舞蹈病是一种由显性基因引起的遗传病,发病年龄较迟,图25为一Huntington舞蹈病的家系图。III1的外祖父I1患有该病,III1现已25岁,其母II2已43岁,均无发病迹象。已知43岁以前发病的占64%,25岁以前发病的占8%,问III1将发病的概率是多少?(提示:用Bayes定理先求出II2尚未发病但为杂合子的条件概率)答:根据以上资料可以得出:II2为杂合子的概率 II2为正常纯合子的概率 II2为杂合子,但尚未发病的概率 = 0.36II2为正常纯合子,但尚未发病的概率 图 25 因此,II2尚未发病但为杂合子的概率 III1为杂合子的概率 III1为正常纯合子的概率 III1为杂合子,但尚未发病的概率 III1为正常纯合子,但尚未发病的概率 因此,III1尚未发病,但为杂合子的概率所以,III1为该病患者的概率为12%。2.10 一实验动物养殖中心,将每30只动物装在一个笼子中,已知其中有6只动物体重不合格。购买者从每一笼子中随机抽出2只称重,若都合格则接受这批动物,否则拒绝。问:(1)检查第一只时就不合格的概率?(2)第一只合格,第二只不合格的概率?(3)接受这批动物的概率?答:(1)设A为第一只不合格的事件,则(2)设B为第二只不合格的事件,则(3)接受这批动物的概率 2.11 一名精神科医生听取6名研究对象对近期所做梦的叙述,得知其中有3名为忧郁症患者,3名是健康者,现从6名研究对象中选出3名,问:(1)一共有多少种配合?(2)每一种配合的概率?(3)选出3名忧郁症患者的概率?(4)至少选出两名忧郁症患者的概率?答:(1)(2)(3)(4)2.12 图26为包含两个平行亚系统的一个组合系统。每一个亚系统有两个连续控制单元,只要有一个亚系统可正常工作,则整个系统即可正常运行。每一单元失灵的概率为0.1,且各单元之间都是独立的。问:(1)全系统可正常运行的概率?(2)只有一个亚系统失灵的概率? 图 26(3)系统不能正常运转的概率?答:(1)P(全系统可正常运行)= 0.94 + 0.93 0.1 4 + 0.92 0.12 2 = 0.963 9(2)P(只有一个亚系统失灵) = 0.92 0.12 2 + 0.93 0.1 4 = 0.307 8(3)P(系统不能正常运转) = 0.14 + 0.13 0.9 4 + 0.12 0.92 4 = 0.036 1或 = 1 0.963 9 = 0.036 12.13 做医学研究需购买大鼠,根据研究的不同需要,可能购买A,B,C,D四个品系中的任何品系。实验室需预算下一年度在购买大鼠上的开支,下表给出每一品系50只大鼠的售价及其被利用的概率:品系每50只的售价 /元被利用的概率A500.000.1B750.000.4C875.000.3D100.000.2问:(1)设Y为每50只大鼠的售价,期望售价是多少?(2)方差是多少?答:(1)(2)2.14 Y为垂钓者在一小时内钓上的鱼数,其概率分布如下表:y0123456p(y)0.0010.0100.0600.1850.3240.3020.118问:(1)期望一小时内钓到的鱼数?(2)它们的方差?答:0 0.001 + 1 0.010 + 2 0.060 + 3 0.185 + 4 0.324 + 5 0.302 + 6 0.118= 4.22 = 02 0.001 + 12 0.010 + 22 0.060 + 32 0.185 + 42 0.324 + 52 0.302 + 62 0.118 4.22 = 1.2572.15 一农场主租用一块河滩地,若无洪水,年终可望获利20 000元。若出现洪灾,他将赔掉12 000元(租地费、种子、肥料、人工费等)。根据常年经验,出现洪灾的概率为0.4。问:(1)农场主期望赢利?(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲状腺肿瘤课件及讲义
- 甲状腺癌CT课件
- 田径裁判基础知识培训
- 人生与哲学教学课件
- 8减几课件教学
- 河南省南阳市九师联盟2024-2025学年高二下学期6月期末考试化学试题(含答案)
- 新解读《GB-T 35019-2018全断面隧道掘进机 泥水平衡盾构机》
- 用气安全知识培训课件记录
- 用心陪伴-静待花开课件
- 生物安全知识培训目的课件
- MRI练习题库及参考答案
- 酒店员工接待礼仪培训
- 2024-2025学年高三上学期《为什么要上一个好大学?》主题班会课件
- 管道cctv检测方案
- 职业技术学校物联网应用技术专业调研报告
- GB/T 43934-2024煤矿土地复垦与生态修复技术规范
- 2023年某技术有限公司技术规范
- 秋季传染病预防课件幼儿园
- 江苏农牧科技职业学院单招《英语》考试参考题库(含答案)
- 心得报告模板
- 义务教育数学新课程标准2022年版变化与解读解读课件
评论
0/150
提交评论