




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间集合体 一 空间几何体结构1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。 (图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。 侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。 如:棱柱ABCDEF-ABCDEF3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形-的棱锥分别叫三棱锥,四棱锥,五棱锥-4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。 圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱OO注:棱柱与圆柱统称为柱体5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO注:棱锥与圆锥统称为锥体6.棱台和圆台的结构特征(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。 棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-ABCD 底面是三角形,四边形,五边形-的棱台分别叫三棱台,四棱台,五棱台- (2)圆台的结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台. 圆台的轴,底面,侧面,母线与圆锥相似 注:棱台与圆台统称为台体。7.球的结构特征:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。 球心:半圆的圆心叫做球的球心。 半径:半圆的半径叫做球的半径。 直径:半圆的直径叫做球的直径。 球的表示:用球心字母表示。如:球O注意:1.多面体: 若干个平面多边形围成的几何体 2.旋转体: 由一个平面绕它所在平面内的一条定直线旋转所形成的封闭几何体 二空间几何体的三视图和直观图1. 空间几何体的三视图: 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 球的三视图都是圆;长方体的三视图都是矩形;2. 空间几何体的直观图斜二测画法 (4)z轴方向的长度不变三空间几何体的表面积和体积1. 柱体,椎体,台体的表面积和体积圆柱:(r是底面半径,l是母线长)圆锥:圆台:(r,r,分别表示上下两底面的半径)2. 球体的表面积与体积球的体积: 表面积:1 有一个几何体的三视图如下图所示,这个几何体应是一个( )A 棱台 B 棱锥 C 棱柱 D 都不对2 棱长都是的三棱锥的表面积为( )A B C D 3 长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( ) A B C D 都不对4 正方体的内切球和外接球的半径之比为( A B C D 5 一个正方体的顶点都在球面上,它的棱长为,则球的表面积是( ) 1 A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2 A 因为四个面是全等的正三角形,则3 B 长方体的对角线是球的直径,4 D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是 5 B 正方体的顶点都在球面上,则球为正方体的外接球,则, 22 将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的表面积和体积23 有一个正四棱台形状的油槽,可以装油,假如它的两底面边长分别等于和,求它的深度为多少?24 已知圆台的上下底面半径分别是,且侧面面积等于两底面面积之和,求该圆台的母线长 22 解:设扇形的半径和圆锥的母线都为,圆锥的半径为,则 ; 23解: 24 解:2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示DCBA(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为LAALBL = L AB公理1作用:判断直线是否在平面内CBA(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线 = 有且只有一个平面,使A、B、C。公理2作用:确定一个平面的依据。PL(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P =L,且PL公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。2 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=acabcb强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点: a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; 两条异面直线所成的角(0, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表示a a=A a2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a b = aab2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:a b ab = P ab2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:aa ab= b作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:= a ab = b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面内的任意一条直线都垂直,我们就说直线L与平面互相垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 L p 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l B2、二面角的记法:二面角-l-或-AB-3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2.3.3 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。本章知识结构框图平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系平面与平面的位置关系直线与平面的位置关系直线与直线的位置关系第2题. ,是异面直线,下面四个命题:过至少有一个平面平行于过至少有一个平面垂直于至多有一条直线与,都垂直至少有一个平面分别与,都平行其中正确命题的个数是()0123答案:第8题. 有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线有且仅有一个平面与垂直;异面直线,不垂直,那么过的任一个平面与都不垂直其中正确命题的个数为()答案:第10题. 已知,为两两垂直且均不共面的三条直线,过作平面与垂直,则直线与平面的关系是()或或不平行答案:第三章 直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0.2、 倾斜角的取值范围: 0180.当直线l与x轴垂直时, = 90.3、直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tan当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.由此可知, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果k1=k2, 那么一定有L1L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线经过点,且斜率为2、直线的斜截式方程:已知直线的斜率为,且与轴的交点为3.2.2 直线的两点式方程1、直线的两点式方程:已知两点其中2、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司资产管理工具集与管理制度
- 2025承接商场装修合同
- 2025电商平台代运营合同范本
- 2025电子产品购销合同范本协议
- 2025上海市住宅物业管理服务标准合同
- 2025设备采购合同书
- 《几何定理证明的方法教学示例》
- 2025电子烟具软件购买合同
- 2025年西安市房屋租赁合同
- 广告传媒行业市场调研报告
- 6.1 初步认识分数(课件 )数学青岛五四版三年级上册(新教材)
- 场景速写课件
- GPS的课件教学课件
- 2026年高考作文备考之抗日战争胜利80周年(九三阅兵)主题素材积累与运用
- 肺栓塞考试题及答案
- 2025年运动员:体育与健康知识试题及答案
- 2024法考主观题真题及答案
- 综合实践 探索年月日的秘密(教案)北师大版数学三年级上册
- 2025年医师三基考试试题及答案(上半年)
- 2025年调酒师职业资格考试模拟试题集锦及答案
- 基孔肯雅热主题班会课件
评论
0/150
提交评论