




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Zoozvol2912DataFusionofNumeriealLinguistieBasedonGranularNeuralNetworks2(710071)(041004)AbstractThispaperpresentsaneuralnetworksbasedknowledgediseoveryanddatamining(KDDM)methodologybasedongranulareomputingneuraleomputingfuzzyeomputilinguistieeomputingandpatternreeognition.Agranularneuralnetwork(GNN)15designedtodealwithnumerieallinguistiedatafusionandgranularknowledgedis-eoveryinnumerieallinguistiedatabases.TheGNN15abletolearninternalgranularrelationsbetweennumericallin-guistieinputsandoutputsandpredietnewrelationinadatabase.KeordsGranularneuralnetworksDatafusionDataminiKnowledgediseovery1(KnowledgediseoveryanddataMiningKDDM).ljKDDM2(crispNeuralNetworkCNN)CNNCNNKDDMCNN.3.14161.732()10(LinguistieNaturalNetworkLNN)()KDDMKDDMCNN(FuzzynetworkFNN)KDDM(ComputingwithWordsCW)KD-DMsJKDDMt.:CNNFNN;IFThen;.(GramilarneuralnetworkGNN)GNN()IFThen.:1);2)CGNNFGNN;3)CGNNFGNNFGNN2:;().KDDM;.2.1)(6013301)863.:.Web.1(a);.CNNsFNN:.3.GNNGNNsGNNs31CGNNCNNsCGNNCGNN2XY4X(a1b11dl)Y(a2bZcZdZ)(a)12.21(b)(50).1(abd):_xa_dx:C118X1In;-l-l4Cabd(abxfor(a)x(a+)FFFNNKD333aaabCddd3xx:(X/!3FGNN(x)d(3)4abpp:f+(x)forx(a+b)1for(ab)x(a+b)f(x)for(ab)x(4).O.p(df+(x)dx(x)f+(x)(f+(x)(10(f+(x)(1KDDMBPAsCNNsCGNNa.CGNNCGNN:FGNN.32FGNNFNNKDFGNNFNNKD9.FGNN321:XY(albleldi)(azbZczdZ)41.FNNKD:FNNKDs:FNNKDIFNNKDZFNNKD3FNNKD4FNNKDIZxKxlaK:;FNNKDZ2xK:xlbKZ;FNNKD32XK:XlCK:;FNNKD42xKXldK;:(abcd);a.(HeurisitieKnowledgeBasedLearingAlgorithmHLA)FNNKDHLAy(y1):n()P12N:aroundiii=l234681216aroundiii(i/10i/4/2).ZXYxY1234z1211191642167X733?3Xel1.522.533.54Y11.522.3.5xYcNNFGNN14X4(x(7)E():stePII)P=12N.I)12N(kKth)l)ight=12k12stepZ222lll444999111240OJJ:(+:)*:(+:(+(:IV:(+(:(10)(11)V)wLRightRight(t+l)=wRightwL(t+1)=wL(t)XXX(albleld)Y(aZbZeZdZ)Z=XY(abed)lll(l010250.5)1(l)1(l)111()2()2()lll(l010.250.5)3(30.30.751.5)3(30.30.751.5)111()4(40.41.02.0)4(40.41.02.0)222()l(l0.10.2505)2()222(20.2051.0)2()4(40.41.02.0)222()3(30.30751.5)6()222()4(40.41.02.0)8(80.82.04.0)333(30.30.751.5)1(l)3(30.30.751.5)333(30.30.751.5)2()6()333(30.30.751.5)3(30.30.751.5)9()333(30.30.7515)4(40.41.02.0)12(121.2306.0)444(40.41.02.0)1()4(40.4102.0)444(40.41.02.0)2(20.2051.0)8(80.8204.0)444(40.41.02.0)3(30.30.751.5)12(6.0)444(40.41.02.0)4(40.41.02.0)16(161.64.08.0)(12)37X7(13)Ste(FUZZYIFThenrules)FNNKD.FNNKD.step4.CGNNFGNNKDDM.CGNNFGNNKDDM1111111?222?444111.555?222.1333555?1l4.4.14X4l8424.2CGNNBased21CGNN22BPA24CNNs22X(a1blCldl)Y(aZbZcZdZ)Z(abd)CNNIalaZalCNNIZxslXICNN.03;CNNZb1bZb11CNNZZX81XICNN0.027;CNN3elcZ11CNN32X81XICNN.008;CNN4d1d2dCNN42X81XICNN0.006.4CNNCGNN334495CGNN433325CGNN433XXXXXYYYZ=XYYYXXXYYYZXYYY1.1.41(1.410.130.350.68)2.2.59(2.590.030.501.02)3.3.57(3570.220.74147)1.555111139(1390030.0650.13)111.5551.1.88(1.880.040.100.19)1.5552.66(2.660.060.140.29)111.5552.3.48(3480.010.190.38)1.5553334.12(40.67)1115553.5.14(10.84)1.5555.78(5.780.531.102.31)1.2.4(2.741.58)2.5.21(5.210.07)3.7.32(7.320.150.591.19)2.557(5.570230.641.27)4(3.540.371.182.34)2.5.30(5.300541.693.38)0(7.000)2.3337.97(7.970.761.943.88)5(8.850.131.573.16)25554449.76(32.364.76)333331.4.01(4.010.441.292.58)2.7.96(7.960.141.503.01)3.10.68(1061.4.64)3.555lll3.32(3.320.341.062.13)333.5551.5.15(5.150.750.911.84)3.5556.96(6.960.661.693.14)333.5552.LLL8.62(8.620.962.234.56)3.55510.58(1054)333.5553.12.36(12361294.128.23)355513.87(13871.414358.90)1.5.76(5.760.521.052.25)2.9.73(9.730.912.324.74)444443.13.82(13821.354.108.24)5CNN7X.42.53.5111.553.442335.21117.3.910.68881333.558.610.58881236661387775.79.7113.82221GNN6FGNN7X71.231.22222.73.6111.556.82222.57773.7513336.5222788.610.23334.57.510.4444l22236.98.710.488812155513.76666.110.1888113.9111143FGNNBased21FGNN324HLAFGNN33633.236cGNNFGNNCGNN.FGNN.KDDMCGNNFGNN.cGNNFGNNFayyadUMShapiroGPetal.Advaneedinknowledgediseoveryanddatemining.California:AAAI/MITpress1996l35LUHongjunSetionoRudyLiuHuanEffeetivedatamiusingneuralnetworks.IEEETransaetionsonKnowldgeandDataEngi-neering19968(6):957961LinTY.Granulareomputingonbinaryrelationsl:DataminingandneighborhoodsystemsInRoughsetsinKnowledgeseov-eryA.SkowornandL.PolkowskiEds.Berlin.Germany:SPringerVerlage1998.121140JayashiYNakaiM.AutomatedexaetionoffuzzyIFTHENrulesusingneuralnerworks.T.IEEEJapan1990110C(3):198206SugenoMYasukawaTAfuzzylogiebasedapproaehtoqualita-tivemodeling.IEEETrans.FuzzySyst.19931:731YaoYY.GranulareomputingusingneighborhoodsystemsEngi-neeringsignandManufaeturngLondonU.K.ringerVer-lag1999.539553WestphalCBlaxtonT.DataMiningSolutionsMethedandToolsforSolvingRealWorldProblems.NewYOrk:Wil1998YaoYYZhaN.Potentialapplicationsofranulare
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 享受民俗风情的文化
- 有效提高化学学习效果的方法
- 小升初模拟语文试题及解析集锦
- 中医护理常见问题及处理方案
- 活动策划与执行合同标准范本
- 建筑材料检测技术规范及报告模板
- 年度合作协议入围供应商合同模板7篇
- 幼儿园收费自查及规范整改报告
- 电商平台客服岗位工作指南
- 轻钢龙骨吊顶施工技术标准与方案
- 产品品质及售后无忧服务承诺书3篇
- 2025年第11个全国近视防控宣传教育月活动课件
- 二年级防溺水教案
- 2025年养老产业市场营销策略调整分析报告
- 部编版二年级道德与法治上册第4课《欢欢喜喜庆国庆》精美课件
- 潍坊市2026届高三开学调研监测考试生物试题及答案
- 三维波动方程双变网格有限差分并行模拟方法:理论、实践与优化
- 好风起二部合唱简谱致远音乐
- 异姓兄妹结拜协议书范本
- 膝关节炎科普知识课件
- 2025广西公需科目考试答案(3套涵盖95-试题)一区两地一园一通道建设人工智能时代的机遇与挑战
评论
0/150
提交评论