




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学归纳法数学归纳法是用于证明与正整数有关的数学命题的正确性的一种严格的推理方法这种方法的原理简单易懂,在实际生活中都能找到它的影子,多米诺骨牌、蝴蝶效应都可以看做是数学归纳法的一种体现。而在数学方面的应用上,它更显出了重要的地位,正因如此,在近年的高考试题,特别是压轴大题上,常常运用数学归纳法来解题;在竞赛数学,数学归纳法更是在数列、组合等多方面发挥着重要作用。(一)数学归纳法的基本形式(1)第一数学归纳法设是一个与正整数有关的命题,如果:当()时,成立;假设成立,由此推得时,也成立,那么,根据对一切正整数时,成立例1 (07江西理22)设正整数数列满足:,且对于任何,有(1)求,; (2)求数列的通项解:(1)据条件得 当时,由,即有,解得因为为正整数,故当时,由,解得,所以(2)由,猜想:下面用数学归纳法证明:1当,时,由(1)知均成立;2假设成立,则时由得,因为时,所以,所以又,所以,故,即时,成立由1,2知,对任意,此题在证明时应注意,归纳奠基需验证的初始值又两个,即和。(2)第二数学归纳法设是一个与正整数有关的命题,如果 当()时,成立; 假设成立,由此推得时,也成立,那么,根据对一切正整数时,成立例2 已知对任意的且,求证:.证:(1)当时,因为且,所以,命题成立;(2)假设时命题成立,即,当时,因为,所以,且,于是,因为,,从而,解得,(舍),即时命题成立.由(1)、(2)知,对一切自然数都有成立.证毕. 这两种数学归纳法,是运用次数较多的方法,大家也比较熟悉,在这里就不赘述了。下面介绍一下数学归纳法的其它形式。(二)数学归纳法的其他形式(1)跳跃数学归纳法 当时,成立, 假设时成立,由此推得时,也成立,那么,根据对一切正整数时,成立例3 证明:任一正方形可以剖分成任意个数多于5个的正方形.证:(1)对于可按如图进行分割, 假设当成立,当时,只要将其中一个正方形分割为4个正方形,即可得到个正方形.由(1)(2)对一切的自然数都成立. (2)反向数学归纳法设是一个与正整数有关的命题,如果对无限多个正整数成立; 假设时,命题成立,则当时命题也成立,那么根据对一切正整数时,成立例4 设都是正数,证明:证:(1)先证明有无限多个正整数,使命题成立.当(对任意的时),不等式成立,对用数学归纳法. 当时,即,因为,所以即不等式成立. 假设时成立,即;则当时因此时,不等式成立,故对于(对任意的时)命题成立.(2)假定时成立,即,于是当时,有 对此式两边同时次方得,即成立,此为时不等式成立.由(1)、(2)知对一切自然数都有.(3) 螺旋数学归纳法设、是两串与自然数有关的命题,如果 命题成立; 对任何自然数,命题成立,则命题成立;若命题成立,则命题成立.那么根据对一切自然数,命题与都成立例5 已知数列定义如下:,求证:数列的前项和为.证:将命题记作,将命题 记作.(1)当时,有即成立.(2)证假设成立,即有于是故成立.(3)再证假设成立,即有于是 即成立.综上,由螺旋归纳法原理,命题、对一切均成立.(4)二重数学归纳法设命题是与两个独立的自然数有关的命题,如果对一切自然数成立,对一切自然数成立; 假设和成立时,可推证命题成立则对所有自然数,命题都成立.例6 设满足,其中是正整数,且,求证:.证:(1)因为对于一切正整数与(),成立.即此命题为真. (2)假设成立,即成立.则,则命题成立,由二重数学归纳法知,对任意自然数都有(三)数学归纳法在高考中应用例1 (05江西卷)已知数(1)证明 (2)求数列的通项公式an.解:(1)用数学归纳法证明:1当n=1时,命题正确.2假设n=k时有则而又时命题正确.由1,2知,对一切nN时有方法二:用数学归纳法证明:1当n=1时,;2假设n=k时有成立,令,在0,2上单调递增,所以由假设有:即也即当n=k+1时成立,所以对一切.(2)下面来求数列的通项:所以 又bn=1,所以.例2 (07湖北卷)已知为正整数,(I)用数学归纳法证明:当时,;(II)对于,已知,求证,求证,;(III)求出满足等式的所有正整数解:()证:用数学归纳法证明:()当时,原不等式成立;当时,左边,右边,因为,所以左边右边,原不等式成立;()假设当时,不等式成立,即,则当时,于是在不等式两边同乘以得,所以即当时,不等式也成立综合()()知,对一切正整数,不等式都成立()证:当时,由()得,于是,()解:由()知,当时,即即当时,不存在满足该等式的正整数故只需要讨论的情形:当时,等式不成立;当时,等式成立;当时,等式成立;当时,为偶数,而为奇数,故,等式不成立;当时,同的情形可分析出,等式不成立综上,所求的只有解法二:()证:当或时,原不等式中等号显然成立,下用数学归纳法证明:当,且时,()当时,左边,右边,因为,所以,即左边右边,不等式成立;()假设当时,不等式成立,即,则当时,因为,所以又因为,所以于是在不等式两边同乘以得,所以即当时,不等式也成立综上所述,所证不等式成立()当,时,而由(),()假设存在正整数使等式成立,即有又由()可得,与式矛盾故当时,不存在满足该等式的正整数下同解法1(四)数学归纳法在组合中应用例1 有64块边长为1的正方体木块,每块有一面为红色,其余5面为白色,把这64块立方体放在一个的国际象棋盘上(棋盘每格是边长为1的正方形,每格上恰放一块),然后将木块“转动”,转动的规则是将同一行(或同一列)的8个木块同时朝一个方向一起转动.问能否经过有限次转动,把所有木块的红色面都转到上面?解:将问题一般化,考虑块木块放入的棋盘的问题,答案是肯定的.现用数学归纳法加以证明如下:时,结论显然成立.设时,结论成立.那么时,由归纳假设,左上角位置上可经过有限次转动,使每个木块的红色面朝上.再将左方第一列的格木块逆时针(向外)旋转,使该列前个木块的红色面转到棋盘左侧.这时由归纳假设可经过有限次转动将右上角位置上每个小块的红色面朝上,且列的转动不影响第一列的木块,行的转动不改变第一列前行红色面朝左的状态.完成上述转动后,再将第一列顺时针转动,使前行上的红色表面朝上.再将上方第一行朝后转动,使第一行的红色面朝后方,同上可将下方棋盘中所有方块的红色面转到上面,而不改变第一行红色面朝后状态.再将第一行转回使第一行的红色面朝上,于是所有棋盘中各小块的红色面都朝上,故时结论成立.因此,对任何正整数结论成立,特别时结论成立.例2 设是2002个元素组成的集合,为整数,满足,证明:可将的所有子集染成黑色或白色,使下列条件成立:(1) 任何两个白色子集的并集是白色; (2) 任何两个黑色子集的并集是黑色;(3) 恰好存在个白色子集.证:考虑中有个元素的一般情形,这时为满足的整数,并且设,对用数学归纳法证明.当时,若,则将及都染成黑色,符合题目要求;若,则将染成黑色,染成白色,符合题目要求;若,则将及都染成白色,符合题目要求.设对元集合,及整数,存在满足题目条件(1)(2)(3)的染色方法,考虑元集.(1) 若,则由归纳假设,存在一种染色方法将的所有子集染成黑色或白色使得满足题目条件(1)(2)(3),这时再将中所含有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工安全隐患排查工具试题及答案
- 注册土木工程师考试研究生课程试题及答案
- 制造业绿色供应链管理在绿色物流中的绿色运输车辆管理优化报告
- 物理模型问题解析及答案2025年
- 2025年制造业数字化供应链协同产业协同技术创新研究报告
- 查验员考试题及答案
- 能源行业数字化转型智能电网优化:智能电网设备运维与健康管理报告
- 生鲜新零售行业2025年供应链优化与冷链物流解决方案报告
- 家具行业的市场竞争与产品设计创新相结合的研究试题及答案
- 控烟知识试题及答案解析
- 风电基础施工方案
- ICD-10疾病编码完整版
- 肩关节超声检查
- 毕业论文-中小企业防火墙的应用
- 可穿戴式设备安全可靠性技术规范 腕戴式设备
- 内科学动脉粥样硬化和冠状动脉粥样硬化性心脏病
- ×××章程修订对比表
- 《运算的意义》(教学设计)-2023-2024学年六年级下册数学北师大版
- 高效养中蜂关键技术
- 广州小学六年级英语下册知识点归纳和习题(全册)
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
评论
0/150
提交评论