




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘 要构造法作为数学解题中的一种重要的思想方法,它是根据题设条件和结论的特殊性,构造出一些新的数学形式,并借助它来认识与解决原问题的一种方法.构造法的内涵十分丰富并且没有完全固定的模式可以套用,它是以广泛的普遍性和特殊的实际问题为基础,针对一些数学问题的特点而采用相应的解决办法.合理运用构造法不仅可以提高解题效率,而且也能够发展学生的思维能力和创新意识.鉴于此,本文的重点主要体现在构造法在解题中的应用.具体来说,本文主要基于构造法的理论简介,探讨它在不等式、函数、以及其他特例中等问题的相关应用.关键词:构造法,解题,应用Analysis to application of structured method in solving problemsAbstractStructured method as an important method of thinking in mathematics problem solving, it is based on the special question condition and conclusion, constructs some new mathematical forms, and with the help of a method to recognize and solve the original problem. The content of structured method is very rich and has no completely fixed models to be applied to practical problems, It is based on a wide range of practical problems of universality and particularity, for some of the features of mathematical problems and solutions using the corresponding method. Proper and rational use of the structured method can not only improve the efficiency of solving the problems, but also develop the students t thinking ability and sense of innovation. In view of this, the focus of this paper is mainly reflected in construction method in solving the problem. Specifically, This paper is mainly based on the theory of structured method, explores it in the inequality, function, and other special medium problems in related practical applications.Keywords: structured method, problem solving, application 目 录一、引言1二、构造法的理论简介1(一)构造法1(二)构造法的历史过程21.构造法与构造主义22.直觉数学阶段23.算法数学阶段24.现代构造数学阶段3(三)构造法的特征3三、构造法在解题中的应用3(一)构造法在不等式中的应用31.构造函数42.构造向量53.构造数列54.构造几何模型6(二)构造法在函数中应用71.构造函数72.构造方程83.构造复数104.构造级数105.构造辅助命题11(三)构造法在其他特例中的应用121.构造新的数学命题122.构造递推关系133.构造反例144.构造实际模型14四、结束语15参考文献16致谢17一、引言数学的学习过程离不开解题,美国数学家哈尔莫斯也曾说过“数学真正的组成部分应该是问题和解,问题才是数学的心脏”.一个好的问题解决方式往往有多种.而数学思维方法是解数学题的灵魂,构造法作为一种传统的数学思想方法,在数学产生时就存在.历史上有不少数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾用构造法解决过数学上的很多问题.数学蕴含着丰富的美,构造法则起到了锦上添花的作用.近几年来,构造法在中学数学中也有了很高的地位.利用造法解题需要有扎实的基础知识、较强的观察能力、创造思维和综合运用能力等.构造法反映了数学发现的创造性思维特点,我们所学的“构造”并不是“胡思乱想”,不是随便“编造”出来的,而是以我们所掌握的知识为背景,以具备扎实的能力为基础,通过仔细观察,认真分析去发现问题的每一个环节以及它们的联系,进而为寻求解题方法创造条件.在运用构造法解题的步骤中,不仅可以巩固学生的基本知识,还能培养学生观察、分析、联想、猜测等数学能力,激发学生的创造性思维.所以在数学教学中,应注重对学生在日常训练中运用构造法解题,使学生体会数学知识间的内在联系和相互转化,能创造性的构造数学模型,巧妙的解决问题,从而获得学习的轻松感和愉悦感,培养与增强了学生学习数学的积极性,提高他们的解题能力.构造法作为一种重要的化归手段,在数学解题中有着重要的作用.本文从构造函数、构造方程等常见构造及特殊构造出发,浅谈构造法在数学解题中的应用.二、构造法的理论简介(一)构造法构造法是数学中的一种基本方法,它是指当某些数学问题使用通常办法或按定势思维去解决很难奏效时,根据问题的条件和结论特征,从新的角度,新的观点观察、分析、解释对象,抓住反映问题的条件和结论之间的内在联系,把握问题的数量、结构等关系的特征,构造出满足条件或结论的新的对象,或构造出一种新的问题形式,使原问题中隐晦不清的关系和性质在新构造的数学对象(或问题形式)中清楚地展现出来,从而借助该数学对象(或问题形式)简捷的解决问题的方法.构造法是解决各类数学题常用而且重要的方法之一,它在解决不同题目时的思考方式灵活多样,构造的形式也不尽相同,如何系统的理解和掌握构造及其构造的思路对数学学习就显得十分必要和重要.本文结合数学实际阐述了构造法在数学解题中的重要性和必要性.我们在解题过程中出于某种需要,要么把题设条件中的关系构造出来,要么将关系设想在某个模型上得以展现,要么将已知条件经过适当的逻辑组合而构造出一种新的形式,从而使问题得以解决.在这种思维过程中,对已有的知识和方法采取分解、组合、变换、类比限定、推广等手段进行思维的再创造,构造新的式子或图形来帮助解题.所谓“构造法”即是在解题中利用已知条件和数学知识所具备的典型特征,用已知条件中的元素为“元件”,用已知的数学关系为“支架”,在思维中构造出一种相关的数学对象,一种新的数学形式;或者利用具体问题的特殊性,为解决的问题设计一个合理的框架,从而使问题转化并得到解决.总之用构造法解题的关键就是搞清对什么进行构造,构造成什么,以及如何构造的问题.(二)构造法的历史过程1.构造法与构造主义从数学产生的那天起,数学中构造性的方法也就伴随着产生了.但是构造性方法这个术语的提出,直接把这个方法推向极端,并致力于这个方法的研究,与数学基础的直觉派是密切相关的.直觉派出于对数学“可信性”的考虑,提出了一个著名的口号:“存在必须是被构造的”.这就是构造主义.2.直觉数学阶段直觉派的先驱者是19世纪末德国的克隆尼克,他明确提出并强调了能行性,主张没有能行性就不得承认它的存在性.他认为数学的出发点不是集合论,而是自然数论,并且批判传统数学缺乏构造性,创立具有构造性的“直觉数学”.3.算法数学阶段“发现集合论悖论以后,有些数学家认定了解决这些悖论所引起的问题的唯一彻底的方法就是把所有的一般集合论概念都从数学中排除,只限于研究那些可以能行的定义或构造的对象”,这就是布劳威创立直觉数学的想法.由于马尔科夫的工作,使构造性方法进入了“算法数学”的阶段.4.现代构造数学阶段1967年比肖泊的书出版以后,宣告了构造法进入“现代构造数学”阶段.他通过重建现代分析的一个重要组成部分,重新激发了构造法的活力.实际上,构造法在古代数学的建立与发展中也起着重要的作用.以西方的几何原本和中国的九章算术为例,尽管两者在逻辑推理方式上迥异,但在运用构造性方法方面却有着一些共同之处.我国古代数学所采用的构造方法,注重问题解决的能行性,数学家吴文俊曾指出,九章算术中的开方术经过一千多年发展到宋代的增开方与正负开方术的求方程根的数值解法是中国古代数学构造性与机械性思想方面的代表性成就.由此可知,在数学发展之初,大量的直观经验需要加以总结和提高,构造方法此时就体现出极强的应用价值,所以在中西方古代数学中产生了深远的影响.(三)构造法的特征一般来说,构造法具有如下两个基本特征: 1对所讨论的对象能有较为直观的描述. 2不仅能判明某种数学结论的存在,而且能够实现运演操作并求出表述的结果,利用构造法证明某个问题,具有简捷易懂,说服力强的特点.当我们遇到复杂的问题或实际问题而无从下手解决时,如果我们恰到好处的构造出一个数学模型来,便会有种“山重水复疑无路,柳暗花明又一村”的感觉.三、构造法在解题中的应用理解和掌握构造思想方法有助于实现数学从常量到变量的这个认识上的飞跃,构造法的前提和基础是熟悉相关的概念,很多数学问题繁冗复杂,难寻入口,若巧妙运用构造思想,能使解答别具一格,耐人寻味.(一)构造法在不等式中的应用不等式是研究数的性质、方程函数等的重要工具之一,在函数的单调性和极值问题中,不等式的应用非常重要.但在不等式的证明中,掌握有一定的难度,而构造法是一种极具创造性的解题方法,体现了各种数学解题方法.下面谈谈怎么用构造法解决在不等式中的相关应用.1.构造函数函数是数学知识的中心之一, 方程可以看作是函数值为零的情况,不等式可以看作是两个函数之间的不等关系,因此方程和不等式都是函数的特殊表现形式.利用函数的性质来解决不等式问题也是一种行之有效的办法.例1.已知,且满,试确定的最大值.(美国第七届中学数学竞赛题)分析:根据这两个式子构造 以为系数的二次函数作为辅助工具手段,从中转化出的不等式.解:由于,构造二次函数: .由已知条件得:,解得: 当时,有.例2.已知,求证.分析:因为,所以构造一次函数的形式,根据k的正负来判断函数的单调性.解:,可构造函数, 所以即, 在上是单调减函数,即.2.构造向量平面向量是数学教学中非常重要的教学工具,它不仅反应数量关系,而且体现位置关系,所以充分利用向量模型可以解决、几何及三角等数学问题,实现数形之间的转化,其解题思路简单,尤其是对几何问题,效果更显著.例3.已知,求证.分析: 观察此题的结构,左边是和的形式,右边是常数,对左边的式子稍加变形就能表示出两个向量的坐标,然后计算出两个向量的模,再结合数量积和模的关系就构造了一个不等式,从而结论得证.证明:设, 则有,与,因为,所以 .解后反思 :本例通过构造二维向量,利用向量数量积的定义及性质来求最大值,大大降低了本题求最大值的难度,在求最值中,巧妙构造适当的向量,会收到直观明快,出奇制胜的效果,同时也体现了向量解决问题的优越性.例4.已知,均为正数,求函数的最小值.解:构造向量, ,原函数为:,即的最小值为.3.构造数列数列问题以其多变的形式和灵活的求解方法出现在数学解题中,在解决诸多数学问题尤其是在不等式证明中,通常可以构造一个数列,利用数列的性质和求和运算来解题,很有使用价值.例5.证.证明:, ,即是递减数列,于是,即.此题的巧妙之处在于恰当的构造了一个辅助数列,而利用数列自身的性质,将难于证明的问题变易,使问题迎刃而解.例6.求不超过的最大整数.分析:如果把展开去计算,计算量比较大且相当麻烦,想到 是的共轭根式,而01,我们先去计算+ 问题就简化多了.解:设=, = 则=, .即+=61472.因为01,所以不超过的最大整数为61471.本例题通过对偶思想,构造对偶数列,使问题得到巧妙解决.4.构造几何模型如果原问题的已知条件,数量关系有比较明显的几何意义或者是以某一种形式可以和几何图形建立联系,那么我们就可以把已知条件或要证不等式中的代数量直观化为某个图形中的几何量,即构造出一个符合条件的几何图形,便可应用该图形的性质及相应的几何知识证明不等式.例7.试证,.BCA分析:由隐含条件可知和的形式考虑到可以构造一个直角三角形,如图所示使,显然,,,;.数形结合是针对具体问题的特点而构造出的几何模型,是借用一类问题的性质,来研究一类问题的思维方法,是丰富学生联想,拓展学生思维,培养学生创造意识和创造思维的手段之一.数形结合有助于找到解答思路,也常使解答简捷,是一种很常用的解题法,一些不等式问题若能发现其几何意义,合理巧妙地构造图形,则可达到事半功倍的效果.(二)构造法在函数中应用构造函数需牢固掌握各类初等函数的性质.构造函数的过程要求我们敏锐地观察、正确地判断、合理地选择适当的函数,并准确运用函数的性质.有些数学问题本质上就是将其中某些变化的量建立起联系来构造函数,再利用函数性质就能解决,其基本思想就是将数学问题转化为函数问题来解答,它的用途非常广泛,常见的有不等式的证明、解方程、做辅助函数等,下面谈谈如何用构造法解决在函数中的应用.1.构造函数例8.(一般形式的中值定理)设和是闭区间上的两个连续函数,在开区间内都可导,则在内至少存在一点,使得.分析:将结果中的换成变量,可得 ,作恒等变换,则,积分得,作辅助函数.证明:作辅助函数:,显然在闭区间上满足Rolle理的条件,故在内至少存 在一点,使得即 .从一般形式的中值定理的证明看出:微分中值类问题中的证明,关键是构造一个辅助函数,构造方法一般从结论出发,通过对条件和结论的分析,构造出辅助函数,具体的构造方法如下:将欲证结论中的换成,然后等式两端积分,再将积分结果移项,使等式一端为常数,则等式的另一端即为所求的辅助函数.2.构造方程方程是数学解题的一个重要工具,对于很多数学问题,根据其已知条件,数量关系构造出与结论相关的函数方程,在已知与未知之间搭起桥梁,通过对辅助方程及方程的性质(比如求根、找根与系数的关系、找判别式等)的研究,来解决原问题,使解答简捷、合理.例9. 设且,求的最值.分析:观察已知条件所给的两个代数式的结构特点,设,则易得到与的等式.联想到将看作是某一个方程的两个根,则代数式的最值问题转化为方程是否有解的问题,问题就容易解决多了.解:由已知,并设,可得 , 所以是关于所构造函数方程的两个根, 或.当=1时,;当时,=9.综上可知的最小值为1,最大值为9.例10.设且.求的值.分析:通过仔细观察,可将变为 ,再由 发现可看作是的两个根,同 时等价为构造函数方程使问题变得简单.解:将变形为, ,是的两个根,即,.所以=.例11.锐角满足,求证.证明:已知条件可视为关于的一元二次方程,由题意可得,由,因为为锐角,即也均为锐角,由一元二次求根公式得,又 ,则,再由,则有, 故.3.构造复数复数是实数的延伸,一些难以解决的实数问题可以转化为复数问题,虽然数的结构会变得复杂,但常使问题简明化,正所谓“退一步海阔天空”.复数内容的增加使学生更加全面的认识数的概念,也把学生的思维打开,而不是局限于实数那个狭小的范围内.例12.求函数的最小值.分析:可以看作是的模,可以看作是的模,然后利用复数模的性质求解.解:设,因为,所以;当 ,同向时,即时 ,.综上可知的最小值为.4.构造级数级数与函数、数列、导数等诸多知识密切的联系在一起,根据问题条件中的数量关系和结构特征,构造出一个级数,然后依据理论,使问题在新的关系下得到转化而获解.下面就是一个构造级数的例子.例 13.设的定义如下:求.解析:构造级数 设 具体的写出如下:,因此=.本题中的级数就是构造的级数,它通过合适的构造,使原问题变得更加简单易求.5.构造辅助命题在解决某些数学问题时,如果缺乏现成的根据,那么我们不妨构造一个辅助命题作为依据,只要证明了这个命题是真命题,原命题就迎刃而解.这种解决数学问题的方法,称为构造辅助命题.例14.解方程. (1)分析:直接去原方程的绝对值符号得. (2)如果方程(1)与(2)同解,问题就容易解决.但在初等数学中没有定理可用来解决直接判定这两个方程是否同解.注意到方程(1)的定义域为,而对于任何恒有,于是可构造辅助命题:设方程. (3)的定义域为,如果对于任何,恒有,那么方程(3)与方程 . (4)同解.证明:先证(3)的解是(4)的解.设是(3)的任一解,则,两边平方得; .再证(4)的解必是(3)的解.设是(4)的任一解,则, 上式可改写为,这表明是方程(3)的解,命题得证.根据上述辅助命题,解例题方程(1)只需解方程(2);解得:或.下列方程也可根据这个辅助命题求解:(1).(2).(三)构造法在其他特例中的应用综合上面,我们所列举构造法的一些应用,其实构造法的应用不仅仅这些,还有其他的,下面我们列举一些其他的构造法,可以让我们更进一步去研究构造法的应用.1.构造新的数学命题当一些问题直接证明(或求解)较困难时,可以寻找与之等价(或接近)的较易证明的另一问题,比如构造原命题的逆否命题、构造矛盾命题等.例15.求证在自然数集中,存在个连续的自然数,使得前个自然数的平方和等于后个数的平方和.分析:这是一个证明存在性的问题,直接证明不易入手,但可以从题目的“连续”和“”的条件发现这个数中,中间的那个数(即第个数)是关键.不妨设这个数为,则第一个数为,第个数为,这样就把问题转化为:求以为未知数的方程, 的自然数解,此方程不难求解,移项得,化简得 ,解得 (舍去),.即存在第一个数为,第个数为,最后一个数为的个连续自然数,符合题目所求.2.构造递推关系根据函数方程和递推关系之间的联系,根据已知条件和各种定理以及相应的运算法则,构造一个递推关系,能产生意想不到的效果.例16.设是方程的两个根,试求的值.分析:令 ,由, ,= 重复迭代就可以任意算出的值,这里,;, , 所以=-843.例17.用1,2两个数字写成位数,其中任意相邻的两位不全为1,记位数的个数为,求.解:把满足条件的位数分成两类:第一类以1开头的数,其第二位数必是2,因此划去这两个数字共有;第二类以2开头,则第二位可以是1,也可以是2,划去第一位数字2,共有个数.所以.因为,所以,; ,.即10位数共有144个.3.构造反例为了说明一个问题不真,常常选择一个符合题设条件但命题不成立的反例,这个过程叫做构造反例.选择特殊值,极端的情形,常常都是构造反例,反例是用已知为真的事实去揭露另一个判断的虚假性.例18.若命题,为无理数,则“”也为无理数是否成立?如果从正面回答这个问题有点难度,因此构造范例如下:解:取无理数(1)若为有理数,则取,(2)若为无理数,则取x=,y=,有.作为反例,这里对是有理数还是无理数并没有正面回答,但是无论它是有理数还是无理数,都给这个命题提供了反例,避免了从正面去证明这个命题.4.构造实际模型数学源于生活而又应用于生活,当遇到抽象问题时,一时难以下笔,则可以考虑从实际生活中找原型,并将数学问题放到实际生活情境中去研究,巧妙地构造出新的数学模型,化抽象为具体,化复杂为简单,从而使问题求解带来意想不到的结果.构造模型就是换一种问题语境,其目的在于,为抽象的数学形式寻求某种具体背景,以便于通过直观的意义来解决问题.例19.求方程有多少组正整数解?分析:这是一个不定方程问题,若用代数法进行讨论非常繁琐,若通过构造法将其转化为组合问题,则此题很容易得到解答.即构造10个相同的小球,放在4个盒子中,则每个盒子不空的总的放法即为方程解的组数.其又相当于将10个小球排成一排放在两条竖线之间,则球与球之间构成9个空位,在9个空位间划3条竖线,将每两条竖线间的小球依次装人4个盒子中,共有 =84种装法,所以原方程有84组正整数解.可见,通过构造模型可使抽象的数学问题具体化,形象化,从而使问题易于解答.构造法是数学中主要的解题方法之一,具有扎实的基本理论、基本运算的功底,是综合的分析解决问题的基础.同时多方位地、多角度的构造辅助问题,有机的将科学知识融汇贯通,提高解决问题的能力.构造法的应用还有很多,需要针对不同的数学问题采用其相应的构造方法,这里不能一一枚举,但通过以上几例可见,构造法在解题应用中不但具有把问题由繁化简,由难化易,由抽象化具体的转化功能,而且还具有保证解答正确的“保险”功能,因此构造法是解决数学问题应用甚广的一种方法.在解决数学问题中若能巧妙恰当地运用构造法,则可以达到事半功倍的效果.四、结束语笔者在形成论文的过程中,参考了大量的文献资料,对构造法在解题中的应用有了更深层次的理解和认识.在此系统的介绍了构造法的理论简介以及在不同类型题中的相关应用,使我们更进一步的了解构造法的有关知识,为更好的运用打下坚实的基础.同时,从本文的例子可以看出,构造法在解题中有意想不到的功效,它能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 给水系统自动化控制方案
- 考点解析人教版八年级上册物理声现象《声音的特性声的利用》章节测试试题(含答案及解析)
- BIM技术在建筑设备安装过程中的管理
- 基于波段间固有光谱特征的地物反射率仿真研究
- 考点攻克人教版八年级《力》单元测评试卷(附答案详解)
- 难点详解人教版八年级上册物理《机械运动》专项测试练习题(含答案解析)
- 居民生活小区用水量预测及二供水龄优化策略研究
- 难点解析-人教版八年级上册物理《声现象》重点解析试题(含详细解析)
- 消防设施安装工艺与流程优化方案
- 解析卷-人教版八年级上册物理声现象《噪声的危害和控制》定向测试试题(详解)
- 平顶山桥梁亮化施工方案
- 小学四年级秋季学期《数学》(人教版)课后练习(全册汇总)含答案
- 万家寨水利枢纽
- 肌肉牵伸技术概述
- 去极端化教育课件
- 研学安全主题班会课件
- 组织行为学 马工程课件5 第五章 领导
- GB/T 32800.3-2016手持式非电类动力工具安全要求第3部分:钻和攻丝机
- GB/T 17421.4-2016机床检验通则第4部分:数控机床的圆检验
- STEAM课程开发和特色STEAM课程案例分析课件
- 插画风手绘线条卡通模板
评论
0/150
提交评论