




已阅读5页,还剩118页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年中考函数与几何专题汇编一解答题(共50小题)1已知抛物线yax2+bx+c(b0)与x轴只有一个公共点(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:ykx+1k与抛物线交于点B、C,直线BD垂直于直线y1,垂足为点D当k0时,直线l与抛物线的一个交点在y轴上,且ABC为等腰直角三角形求点A的坐标和抛物线的解析式;证明:对于每个给定的实数k,都有A、D、C三点共线2在平面直角坐标系xOy中,抛物线yax2+bx与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,),Q(2,2)若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围3在平面直角坐标系xOy中(如图),已知抛物线yx22x,其顶点为A(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”试求抛物线yx22x的“不动点”的坐标;平移抛物线yx22x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式4已知抛物线yx2bx+c(b,c为常数,b0)经过点A(1,0),点M(m,0)是x轴正半轴上的动点()当b2时,求抛物线的顶点坐标;()点D(b,yD)在抛物线上,当AMAD,m5时,求b的值;()点Q(b+,yQ)在抛物线上,当AM+2QM的最小值为时,求b的值5如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由6将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中ABC30将此三角板沿y轴向下平移,当点B平移到原点O时运动停止设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标7已知:如图,抛物线yax2+bx+3与坐标轴分别交于点A,B(3,0),C(1,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线解析式;(2)当点P运动到什么位置时,PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PEx轴交抛物线于点E,连接DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由8一次函数ykx+4与二次函数yax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0m4)且垂直于y轴的直线与二次函数yax2+c的图象相交于B,C两点,点O为坐标原点,记WOA2+BC2,求W关于m的函数解析式,并求W的最小值9如图,在平面直角坐标系中,抛物线yx22x3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MNBD,交抛物线于点N(点N在对称轴的右侧),过点N作NHx轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把AOQ绕点O顺时针旋转一定的角度(0360),得到AOQ,其中边AQ交坐标轴于点G在旋转过程中,是否存在一点G,使得QQOG?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由10在平面直角坐标系中,抛物线yx2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q(1)如图1,连接AC,BC若点P为直线BC上方抛物线上一动点,过点P作PEy轴交BC于点E,作PFBC于点F,过点B作BGAC交y轴于点G点H,K分别在对称轴和y轴上运动,连接PH,HK当PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D,N为直线DQ上一点,连接点D,C,N,DCN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由11综合与探究如图,抛物线yx2+bx+c与x轴交于A、B两点,与y轴交于C点,OA2,OC6,连接AC和BC(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当ACD的周长最小时,点D的坐标为 (3)点E是第四象限内抛物线上的动点,连接CE和BE求BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由12如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x27x+120的两个根(BCAB),OA2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段EDDA向点A运动,运动的时间为t(0t6)秒,设BOP与矩形AOED重叠部分的面积为S(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由13如图,在平面直角坐标系中,抛物线yx2+bx+c与x轴交于点A(3,0)、点B(1,0),与y轴交于点C(1)求拋物线的解析式;(2)过点D(0,3)作直线MNx轴,点P在直线NN上且SPACSDBC,直接写出点P的坐标14如图,抛物线y(x1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,3)P为抛物线上一点,横坐标为m,且m0(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h求h关于m的函数解析式,并写出自变量m的取值范围;当h9时,直接写出BCP的面积15如图,在平面直角坐标系中,抛物线yax2+bx+2(a0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(2,3)和点E(3,2),点P是第一象限抛物线上的一个动点(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN2,动点Q从点P出发,沿PMNA的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标16如图1,抛物线C:yax2+bx经过点A(4,0)、B(1,3)两点,G是其顶点,将抛物线C绕点O旋转180,得到新的抛物线C(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:ykx经过点A,D是抛物线C上的一点,设D点的横坐标为m(m2),连接DO并延长,交抛物线C于点E,交直线l于点M,若DE2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得DEPGAB?若存在,求出点P的横坐标;若不存在,请说明理由17如图,顶点为M的抛物线yax2+bx+3与x轴交于A(3,0),B(1,0)两点,与y轴交于点C(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由(3)若在第一象限的抛物线下方有一动点D,满足DAOA,过D作DGx轴于点G,设ADG的内心为I,试求CI的最小值18已知抛物线yax2+x+4的对称轴是直线x3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN3时,求点M的坐标19已知抛物线yax2+bx4经过点A(2,0)、B(4,0),与y轴交于点C(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由20如图,顶点为M的抛物线yax2+bx+3与x轴交于A(1,0),B两点,与y轴交于点C,过点C作CDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y(x0)经过点D,连接MD,BD(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,BPD的度数最大?(请直接写出结果)21如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),ABO的中线AC与y轴交于点C,且M经过O,A,C三点(1)求圆心M的坐标;(2)若直线AD与M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PEy轴,交直线AD于点E若以PE为半径的P与直线AD相交于另一点F当EF4时,求点P的坐标22若二次函数yax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,2),且过点C(2,2)(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且SPBA4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使ABOABM?若存在,求出点M到y轴的距离;若不存在,请说明理由23如图1,在平面直角坐标系中,直线y5x+5与x轴,y轴分别交于A,C两点,抛物线yx2+bx+c经过A,C两点,与x轴的另一交点为B(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由24在平面直角坐标系中,直线yx+2与x轴交于点A,与y轴交于点B,抛物线yax2+bx+c(a0)经过点A、B(1)求a、b满足的关系式及c的值(2)当x0时,若yax2+bx+c(a0)的函数值随x的增大而增大,求a的取值范围(3)如图,当a1时,在抛物线上是否存在点P,使PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由25如图,抛物线ymx2mx4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2x1(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当ax1a+2,x2时,均有y1y2,求a的取值范围;(3)抛物线上一点D(1,5),直线BD与y轴交于点E,动点M在线段BD上,当BDCMCE时,求点M的坐标26如图,在平面直角坐标系中,抛物线yax2+bx+c与x轴交于点A(2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得PEA和AOC相似的点P的坐标;(3)作PFBC,垂足为F,当直线l运动时,求RtPFD面积的最大值27如图,抛物线yx2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90,所得直线与x轴交于点D(1)求直线AD的函数解析式;(2)如图,若点P是直线AD上方抛物线上的一个动点当点P到直线AD的距离最大时,求点P的坐标和最大距离;当点P到直线AD的距离为时,求sinPAD的值28如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PDx轴于点D,交直线BC于点E,抛物线的对称轴是直线x1(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PEOD,求PBE的面积(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由29综合与探究如图,抛物线yax2+bx+6经过点A(2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1m4)连接AC,BC,DB,DC(1)求抛物线的函数表达式;(2)BCD的面积等于AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由30在平面直角坐标系中,已知抛物线L:yax2+(ca)x+c经过点A(3,0)和点B(0,6),L关于原点O对称的抛物线为L(1)求抛物线L的表达式;(2)点P在抛物线L上,且位于第一象限,过点P作PDy轴,垂足为D若POD与AOB相似,求符合条件的点P的坐标31如图,若b是正数,直线l:yb与y轴交于点A;直线a:yxb与y轴交于点B;抛物线L:yx2+bx的顶点为C,且L与x轴右交点为D(1)若AB8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x00,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b2019和b2019.5时“美点”的个数32如图,抛物线yax2+x+c交x轴于A,B两点,交y轴于点C直线yx2经过点A,C(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m当PCM是直角三角形时,求点P的坐标;作点B关于点C的对称点B,则平面内存在直线l,使点M,B,B到该直线的距离都相等当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:ykx+b的解析式(k,b可用含m的式子表示)33已知抛物线C1:y(x1)24和C2:yx2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线yx+b经过点A,交抛物线C1于另一点B请你在线段AB上取点P,过点P作直线PQy轴交抛物线C1于点Q,连接AQ若APAQ,求点P的横坐标;若PAPQ,直接写出点P的横坐标(3)如图2,MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行若MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系34如图,已知抛物线yx2+bx+c经过点A(1,0)、B(5,0)(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)35已知抛物线ya(x2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且DEFA,则DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且m,试确定满足条件的点P的个数36在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(2,4),B(2,2),C(4,2),D(4,4)(1)填空:正方形的面积为 ;当双曲线y(k0)与正方形ABCD有四个交点时,k的取值范围是: ;(2)已知抛物线L:ya(xm)2+n(a0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y(k0)与边DC交于点N点Q(m,m22m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;当点F在点N下方,AENF,点P不与B,C两点重合时,求的值;求证:抛物线L与直线x1的交点M始终位于x轴下方37如图,在直角坐标系中,直线yx+3与x轴,y轴分别交于点B,点C,对称轴为x1的抛物线过B,C两点,且交x轴于另一点A,连接AC(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由38如图,已知抛物线yx2+bx+c与x轴交于A、B两点,AB4,交y轴于点C,对称轴是直线x1(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q设运动时间为t(t0)秒若AOC与BMN相似,请直接写出t的值;BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由39已知抛物线yax2+bx+c顶点(2,1),经过点(0,3),且与直线yx1交于A,B两点(1)求抛物线的解析式;(2)若在抛物线上恰好存在三点Q,M,N,满足SQABSMABSNABS,求S的值;(3)在A,B之间的抛物线弧上是否存在点P满足APB90?若存在,求点P的横坐标;若不存在,请说明理由(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN)40如图1,在平面直角坐标系xOy中,已知抛物线yax22ax8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4)(1)点A的坐标为 ,点B的坐标为 ,线段AC的长为 ,抛物线的解析式为 (2)点P是线段BC下方抛物线上的一个动点如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形求点Q的坐标如图2,过点P作PECA交线段BC于点E,过点P作直线xt交BC于点F,交x轴于点G,记PEf,求f关于t的函数解析式;当t取m和4m(0m2)时,试比较f的对应函数值f1和f2的大小41如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0)(1)求该抛物线的解析式;(2)若AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由42如图,在平面直角坐标系xOy中,已知A(2,2),B(2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿BCD运动(M不与点B、点D重合),设运动时间为t(秒)(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若PAMPBM,求点P的坐标;(3)当M在CD上运动时,如图过点M作MFx轴,垂足为F,MEAB,垂足为E设矩形MEBF与BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K是否存在点Q,使得HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由43如图,在平面直角坐标系中,直线yx+2与x轴交于点A,与y轴交于点B,抛物线yx2+bx+c经过A,B两点且与x轴的负半轴交于点C(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当ABD2BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标44如图,抛物线yax2+6ax(a为常数,a0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(3t0),连接BD并延长与过O,A,B三点的P相交于点C(1)求点A的坐标;(2)过点C作P的切线CE交x轴于点E如图1,求证:CEDE;如图2,连接AC,BE,BO,当a,CAEOBE时,求的值45如图,二次函数yx2+bx+c的图象与x轴交于点A(1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB请问:MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由46已知二次函数yax2+bx4(a0)的图象与x轴交于A、B两点,(A在B左侧,且OAOB),与y轴交于点C(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA1:2,直线BD与y轴交于点E,连接BC若BCE的面积为8,求二次函数的解析式;若BCD为锐角三角形,请直接写出OA的取值范围47如图,抛物线yx2+(a+1)xa与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C已知ABC的面积是6(1)求a的值;(2)求ABC外接圆圆心的坐标;(3)如图,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,QPB的面积为2d,且PAQAQB,求点Q的坐标48如图1,在平面直角坐标系中,抛物线yx2+x与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,CAD绕点C顺时针旋转得到CFE,点A恰好旋转到点F,连接BE(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1x轴于点D1,点P是抛物线上一动点,过点P作PMx轴,点M为垂足,使得PAM与DD1A相似(不含全等)求出一个满足以上条件的点P的横坐标;直接回答这样的点P共有几个?49如图抛物线经yax2+bx+c过点A(1,0),点C(0,3),且OBOC(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x1上的两个动点,且DE1,点D在点E的上方,求四边形ACDE的周长的最小值(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标50如图,二次函数yx2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x1对称,点A的坐标为(1,0)(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15,求线段CP的长度;(3)当axa+1时,二次函数yx2+bx+c的最小值为2a,求a的值2019年中考函数与几何专题汇编参考答案与试题解析一解答题(共50小题)1【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)ykx+1kk(x1)+1过定点(1,1),且当k0时,直线l变为y1平行x轴,与轴的交点为(0,1),即可求解;计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:ya(x2)2ax24ax+4a,则c4a;(2)ykx+1kk(x1)+1过定点(1,1),且当k0时,直线l变为y1平行x轴,与y轴的交点为(0,1),又ABC为等腰直角三角形,点A为抛物线的顶点;c1,顶点A(1,0),抛物线的解析式:yx22x+1,x2(2+k)x+k0,x(2+k),xDxB(2+k),yD1;则D,yC(2+k2+k),C,A(1,0),直线AD表达式中的k值为:kAD,直线AC表达式中的k值为:kAC,kADkAC,点A、C、D三点共线【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等知识点,本题关键是复杂数据的计算问题,难度不大2【分析】(1)A(0,)向右平移2个单位长度,得到点B(2,);(2)A与B关于对称轴x1对称;(3)a0时,当x2时,y2,当y时,x0或x2,所以函数与AB无交点;a0时,当y2时,ax22ax2,x或x当2时,a;【解答】解:(1)A(0,)点A向右平移2个单位长度,得到点B(2,);(2)A与B关于对称轴x1对称,抛物线对称轴x1;(3)对称轴x1,b2a,yax22ax,a0时,当x2时,y2,当y时,x0或x2,函数与AB无交点;a0时,当y2时,ax22ax2,x或x当2时,a;当a时,抛物线与线段PQ恰有一个公共点;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键3【分析】(1)a10,故该抛物线开口向上,顶点A的坐标为(1,1);(2)设抛物线“不动点”坐标为(t,t),则tt22t,即可求解;新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:xm,与x轴的交点C(m,0),四边形OABC是梯形,则直线xm在y轴左侧,而点A(1,1),点B(m,m),则m1,即可求解【解答】解:(1)a10,故该抛物线开口向上,顶点A的坐标为(1,1);(2)设抛物线“不动点”坐标为(t,t),则tt22t,解得:t0或3,故“不动点”坐标为(0,0)或(3,3);当OCAB时,新抛物线顶点B为“不动点”,则设点B(m,m),新抛物线的对称轴为:xm,与x轴的交点C(m,0),四边形OABC是梯形,直线xm在y轴左侧,BC与OA不平行,OCAB,又点A(1,1),点B(m,m),m1,故新抛物线是由抛物线yx22x向左平移2个单位得到的;当OBAC时,同理可得:抛物线的表达式为:y(x2)2+2x24x+6,当四边形OABC是梯形,字母顺序不对,故舍去,综上,新抛物线的表达式为:y(x+1)21【点评】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可4【分析】()将点A(1,0)代入yx2bx+c,求出c关于b的代数式,再将b代入即可求出c的值,可进一步写出抛物线解析式及顶点坐标;()将点D(b,yD)代入抛物线yx2bxb1,求出点D纵坐标为b1,由b0判断出点D(b,b1)在第四象限,且在抛物线对称轴x的右侧,过点D作DEx轴,可证ADE为等腰直角三角形,利用锐角三角函数可求出b的值;()将点Q(b+,yQ)代入抛物线yx2bxb1,求出Q纵坐标为,可知点Q(b+,)在第四象限,且在直线xb的右侧,点N(0,1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QHx轴于点H,则点H(b+,0),在RtMQH中,可知QMHMQH45,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM,所以()(1)+2(b+)(),解方程即可【解答】解:()抛物线yx2bx+c经过点A(1,0),1+b+c0,即cb1,当b2时,yx22x3(x1)24,抛物线的顶点坐标为(1,4);()由()知,抛物线的解析式为yx2bxb1,点D(b,yD)在抛物线yx2bxb1上,yDb2bbb1b1,由b0,得b0,b10,点D(b,b1)在第四象限,且在抛物线对称轴x的右侧,如图1,过点D作DEx轴,垂足为E,则点E(b,0),AEb+1,DEb+1,得AEDE,在RtADE中,ADEDAE45,ADAE,由已知AMAD,m5,5(1)(b+1),b31;()点Q(b+,yQ)在抛物线yx2bxb1上,yQ(b+)2b(b+)b1,可知点Q(b+,)在第四象限,且在直线xb的右侧,AM+2QM2(AM+QM),可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由GAM45,得AMGM,则此时点M满足题意,过点Q作QHx轴于点H,则点H(b+,0),在RtMQH中,可知QMHMQH45,QHMH,QMMH,点M(m,0),0()(b+)m,解得,m,AM+2QM,()(1)+2(b+)(),b4【点评】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题关键是能够根据给定参数判断点的位置,从而构造特殊三角形来求解5【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)SPBCPG(xCxB),即可求解;分点P在直线BC下方、上方两种情况,分别求解即可【解答】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBCPG(xCxB)(t+1t26t5)t2t6,0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s5,即直线BP的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏6【分析】(1)与m轴相交于点P(,0),可知OB,OA1;(2)设AB的解析式ykx+b,将点B(0,),A(1,0)代入即可;(3)在移动过程中OBm,则OAtan30OB(m)1m,所以s(m)(1m)m+,(0m);当m0时,s,即可求Q(0,)【解答】解:(1)与m轴相交于点P(,0),OB,ABC30,OA1,S;(2)B(0,),A(1,0),设AB的解析式ykx+b,yx+;(3)在移动过程中OBm,则OAtan30OB(m)1m,s(m)(1m)m+,(0m)当m0时,s,Q(0,)【点评】本题考查直角三角形平移,一次函数的性质;能够通过函数图象得到B(0,)是解题的关键7【分析】(1)用待定系数法即可求抛物线解析式(2)设点P横坐标为t,过点P作PFy轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长把PAB分成PAF与PBF求面积和,即得到PAB面积与t的函数关系,配方即得到t为何值时,PAB面积最大,进而求得此时点P坐标(3)设点P横坐标为t,即能用t表示PD的长根据对称性可知点P、E关于抛物线对称轴对称,用中点坐标公式可得用t表示点E横坐标,进而用t表示PE的长(注意点P、E左右位置不确定,需分类讨论)由于PDE要成为等腰直角三角形,DPE90,所以PDPE,把含t的式子代入求值即得到点P坐标【解答】解:(1)抛物线yax2+bx+3过点B(3,0),C(1,0) 解得:抛物线解析式为yx22x+3(2)过点P作PHx轴于点H,交AB于点Fx0时,yx22x+33A(0,3)直线AB解析式为yx+3点P在线段AB上方抛物线上设P(t,t22t+3)(3t0)F(t,t+3)PFt22t+3(t+3)t23tSPABSPAF+SPBFPFOH+PFBHPFOB(t23t)(t+)2+点P运动到坐标为(,),PAB面积最大(3)存在点P使PDE为等腰直角三角形设P(t,t22t+3)(3t0),则D(t,t+3)PDt22t+3(t+3)t23t抛物线yx22x+3(x+1)2+4对称轴为直线x1PEx轴交抛物线于点EyEyP,即点E、P关于对称轴对称1xE2xP2tPE|xExP|22t|PDE为等腰直角三角形,DPE90PDPE当3t1时,PE22tt23t22t解得:t11(舍去),t22P(2,3)当1t0时,PE2+2tt23t2+2t解得:t1,t2(舍去)P(,)综上所述,点P坐标为(2,3)或(,)时使PDE为等腰直角三角形【点评】本题考查了二次函数的图象与性质,求二次函数最值,等腰直角三角形的性质,中点坐标公式,一元二次方程的解法分类讨论进行计算时,要注意讨论求得的解是否符合分类条件,是否需要舍去8【分析】(1)由交点为(1,2),代入ykx+4,可求得k,由yax2+c可知,二次函数的顶点在y轴上,即x0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y2x2+4,令ym,得2x2+m40,可求x的值,再利用根与系数的关系式,即可求解【解答】解:(1)由题意得,k+42,解得k2,又二次函数顶点为(0,4),c4把(1,2)带入二次函数表达式得a+c2,解得a2(2)由(1)得二次函数解析式为y2x2+4,令ym,得2x2+m40,设B,C两点的坐标分别为(x1,m)(x2,m),则,WOA2+BC2当m1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可9【分析】(1)先确定点F的位置,可设点N(m,m22m3),则点F(m,2m6),可得|NF|(2m6)(m22m3)m2+4m3,根据二次函数的性质得m2时,NF 取到最大值,此时MN取到最大值,此时HF2,此时F(2,2),在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,sinOCK,直线KC的解析式为:y,从而得到直线FJ的解析式为:y联立解出点J(,)得FP+PC的最小值即为FJ的长,且|FJ|最后得出|HF+FP+PC|min;(2)由题意可得出点Q(0,2),AQ,应用“直角三角形斜边上的中线等于斜边上的一半”取AQ的中点G,连接OG,则OGGQAQ,此时,AQOGOQ,把AOQ绕点O顺时针旋转一定的角度(0360),得到AOQ,其中边AQ交坐标轴于点G,则用OGGQ,分四种情况求解【解答】解:(1)如图1抛物线yx22x3与x轴交于点A,B(点A在点B的左侧),交y轴于点C令y0解得:x11,x23,令x0,解得:y3,A(1,0),B(3,0),C(0,3)点D为抛物线的顶点,且1,4点D的坐标为D(1,4)直线BD的解析式为:y2x6,由题意,可设点N(m,m22m3),则点F(m,2m6)|NF|(2m6)(m22m3)m2+4m3当m2时,NF 取到最大值,此时MN取到最大值,此时HF2,此时,N(2,3),F(2,2),H(2,0)在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,sinOCK,直线KC的解析式为:y,且点F(2,2),PJPC,直线FJ的解析式为:y点J(,)FP+PC的最小值即为FJ的长,且|FJ|HF+FP+PC|min;(2)由(1)知,点P(0,),把点P向上平移个单位得到点Q点Q(0,2)在RtA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年项目管理实战高级面试模拟题及应对策略
- 2025年安全生产知识题库及答案解析
- 2025年职业安全卫生培训选择题及答案
- 2025年旅游管理人员岗位能力测评试题及答案解析
- 2025年竞争情报分析师职业能力水平考核试题及答案解析
- 2025年计算机程序开发工程师专业技术考核试卷及答案解析
- 2025年消防安全考核重点实战题及答案
- 课件中单词处理
- 2025年国际会展服务师资格考试试题及答案解析
- 2025年广告设计师专业技能考核试题及答案解析
- 港口和码头基本知识培训课件
- 美容外科安全应急预案范文(3篇)
- 水利工程拦水坝建设方案实例
- 新学期+心动力+课件-2025-2026学年高二上学期开学第一课主题班会
- 6G多维度切片QoS保障-洞察及研究
- 老年人能力评估师考试题能力模拟题及答案
- 2025-2026学年外研版(三起)(2024)小学英语四年级上册教学计划及进度表
- 2025年安徽国控集团所属企业招聘7人笔试备考题库及答案解析
- 1.1认识社会生活(课件)- 2025-2026学年统编版道德与法治八年级上册
- 仓库盘盈盘亏处理方案(3篇)
- 胎盘早剥病例汇报
评论
0/150
提交评论