




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数理统计学习心得现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。这时只靠部分数据的描述是无法获得总体特征的知识。我们利用统计推断的方法来解决。所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法,下面就参数估计和假设检验的基本概念及原理简单谈谈。参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。参数估计包括点估计和区间估计两种方法。点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。构造点估计常用的方法是:矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。最小二乘法。主要用于线性统计模型中的参数估计问题。贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:利用已知的抽样分布。利用区间估计与假设检验的联系。利用大样本理论。假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。 假设检验的一般步骤1、提出检验假设(又称无效假设,符号是H0)和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作,通常取=0.05或=0.01。2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P,结论为按所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P,结论为按所取水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。假设检验应注意的问题1、做假设检验之前,应注意资料本身是否有可比性。2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。回归分析:应用数学的方法,通过对大量的试验数据进行处理和分析,从而得出正确的反映变量之间的相互关系的数学表达式,并判断其有效性。进而根据表达式,根据一些变量的取值去预测或控制另一变量的变化,并分析这些变量对另一变量的影响程度。(强调的是数学模型的建立,且用F检验验证所有自变量与因变量的显著性。用T检验验证模型中每个自变量单独与因变量的影响显著性。)相关分析:在统计分析中,对两个及两个以上变量间数量关系的性质、特点、表现形式进行描述、处理的一种专门的统计分析技术。变量之间的不严格、不准确、不稳定的数量依存关系被称为相关关系,相关关系的强弱、疏密、因环境、时间的变化而呈现出一种独特的规律性。相关分析的目的就是探索相关关系的变动规律,并利用相关分析的结果,为回归分析及统计决策提供有力的依据。相关系数只能描述变量间的关系密切程度,不能揭示现象间的本质联系。相关系数:随机向量的各个变量之间线性关系的密切程度。多重共线问题:当自变量之间存在一定程度的关联,即相关系数在0和1之间时,回归模型中的自变量就会削弱各自对因变量的影响,在一定程度上影响参数估计值的准确性和稳定性。对多重共线问题的测度:1,自变量的容忍度,以容许度指标表示。容许度1R平方。容许度越大,说明某个自变量X与方程中的其他自变量之间的线性关系越弱,多重共线性较低。反之,容许度接近0,说明某个自变量X与方程中的其他自变量之间的线性关系较强,多重共线性较高,应将此自变量剔除出模型。2,方差膨胀因子。方差膨胀因子是容许度的倒数,其数值越大,说明自变量之间的多重共线越高。3,D-W检验。检验模型中的误差项是否存在自相关的一种有效方法。D在0-4之间。D=2,残差之间独立。D2,残差之间负相关。根据经验,D(1.5,2.5)之间表示没有显著自相关问题。自变量:我们将变量中的原因变量称为自变量,即不受其他因素影响而发生变化在前的变量。因变量:结果变量,受自变量变化影响而跟着发生变化的变量。线性回归模型:是线性模型中的一种,变量之间的关系呈线性关系,数学基础是回归分析。(用回归分析方法建立的,变量之间的关系呈线性关系,用以揭示经济现象中的因果关系的模型)。事件分析法:主要是分析某事件对于社会经济生活是否确实有冲击作用。需要首先界定事件发生作用的时间段,即事件窗口,然后通过事件窗口超额收益的大小来衡量事件的影响。所谓超额收益是指实际收益与假设发生该事件的期望收益之差,而期望收益是由计量经济模型计算。事件窗口即为事件期。 配对T检验主要解决配对样本数据的两个总体均值有否显著差异的问题。主要解决来自配对样本数据的两个总体均值有否显著差异的问题。所谓配对样本,通常是指对同一观察对象在使用某种新方法前后的两组数据进行比照,用两组数据的均值,有否显著差异来判断这种新方法的有效性。配对样本的T检验对数据的要求:1,抽取样本数据的两个总体必须服从正态分布。2,两个样本的样本容量相同。显著性水平:假设检验中,常有0.05,0.01作为检验的显著水平。显著性水平是指当原假设为真时人们拒绝它的概率,亦称拒真概率。根据假设检验的原理,拒真概率应是一个小概率事件。如果在检验中发现用样本数据计算出来的实际概率小于或等于事先给定显著性水平(p),就可以认为这个在一次试验中不应该发生的更小概率,居然在一次试验中发生了,我们有理由怀疑原假设的真实性,所以拒绝原假设。(p),接受原假设。学习到连续型随机变量时已经与高中学习的相差很大,对连续型随机变量求其在去某值时的概率是无意义的,只能求变量落在某一范围内的概率。因为现实生活中的事件大多受到两个或多个因素影响,很多随机现象中,往往要涉及到多个随机变量,而且这些随机变量之间存在某种联系,因此多维随机变量的知识在生活中应用更广。随机变量的概率密度与分布直接反映出随机变量的分布情况,随机变量的数学期望,方差等在生活中可以帮助人们做出选择。比如大赛前选拔选手才赛,对某产品的质量估计等。当一些随机变量的分布不易求出或不需要知道随机变量的概率分布,而只需要知道其数学期望,方差即可知道其大概分布情况。随机变量的数学期望反映了随机变量取值的平均值,而随机变量的方差反映了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工艺方案评审意见(3篇)
- 公司员工医疗管理制度
- 公园特许经营招商方案(3篇)
- 军品生产现场管理制度
- 县级电力营销管理制度
- 单位独立运行管理制度
- 公司计件员工管理制度
- 地下遗址改造方案(3篇)
- 广电播出变更管理制度
- DB62T 4485-2021 葡萄抗寒性评价规范
- 生物化学教学研究知识图谱可视化分析
- 小学老师心理健康教育培训
- 正规监控合同协议
- 高中生物2015-2024年10年高考真题专题分类汇编-专题6光合作用考点1捕获光能的色素与结构
- 广东高考:化学必考知识点归纳
- 江苏卷-2025届高考地理4月模拟预测卷(解析版)
- 透射电镜基本操作解答
- 大数据专业英语教程 课件 Unit 1 B Applications of Big Data
- 五脏排毒课件
- 煤矿雨季三防培训
- 2024年系统分析师各章节重要考点及试题及答案
评论
0/150
提交评论