



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解一元二次方程(因式分解法)教学目标:1.知道什么是因式分解法。2.学会用因式分解法解特殊的一元二次方程。3.通过因式分解法解一元二次方程,体会数学中的转化思想。教学重点:用因式分解法解一元二次方程教学难点:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便学习过程:一.拓通准备: 1.因式分解法:_,_._,_.2.把下列各式因式分解(1)4x2-x (2)9x2-4 (3)x2-4x+4 (4)x2-5x+6二.探求新知:自学课本内容,归纳出:1.什么是因式分解法:_.2.因式分解法解一元二次方程的一般步骤:_.三.自我尝试:直接写出下列方程的 两个根:(1)x(x-1)=0 (2)(y-2)(y+5)=0 (3)t2=2t(3) (x+1)(3x-2) =0 (4)(x-)(5x+)=0四.典型例题例1:用因式分解法解下列方程:(1)15x2=6x=0 (2)4x2-9=0 对应练习:解方程(1)16x2+10x=0 (2)(y-3)2=1例2:解方程(1)(2x-1)2=(x-3)2 (2) x2-4x+4=0 对应练习:用因式分解法解方程:(1)x-2-x(x-2)=0 (2)(x+1)2-25=0 (3)x2-5x+6=0 (4)(2x+1)2-6(2x+1)+8=0五.当堂检测: 1.(x+a)(x+b)=0与方程x2-x-30=0同解,则a+b等于( ) A: 1 B : -1 C: 11 D:-112.用因式分解法解方程:x(x+3)=x+3 x2=8x 2x(2x+5)=(x-1)(2x+5)六归纳小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次公式法是由配方法推导而得到配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程区别:配方法要先配方,再开方求根公式法直接利用公式求根因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0七。布置作业(一)、选择题1下面一元二次方程解法中,正确的是( )A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1= ,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x 两边同除以x,得x=12下列命题方程kx2-x-2=0是一元二次方程;x=1与方程x2=1是同解方程;方程x2=x与方程x=1是同解方程;由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有( )A0个 B1个 C2个 D3个3如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为( )A- B-1 C D1(二)、填空题1x2-5x因式分解结果为_;2x(x-3)-5(x-3)因式分解的结果是_2方程(2x-1)2=2x-1的根是_3二次三项式x2+20x+96分解因式的结果为_;如果令x2+20x+96=0,那么它的两个根是_(三)、综合提高题1用因式分解法解下列方程(1)3y2-6y=0 (2)25y2-16=0(3)x2-12x-28=0 (4)x2-12x+35=02已知(x+y)(x+y-1)=0,求x+y的值3今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州天柱县第二季度(第一次)招聘8个全日制城镇公益性岗位模拟试卷及一套参考答案详解
- 2025湖南长沙乡村运营职业经理选聘考前自测高频考点模拟试题及答案详解(典优)
- 2025年甘肃省酒泉市博物馆工作人员招聘模拟试卷附答案详解(黄金题型)
- 2025年芜湖繁昌区教育高层次人才招引25人模拟试卷及1套完整答案详解
- 2025年合肥肥西县中医院项目工作人员招聘2人考前自测高频考点模拟试题参考答案详解
- 2025湖南株洲市荷塘区招聘社区专职工作者笔试模拟试卷及参考答案详解1套
- 2025年山西云时代技术有限公司校园招聘考前自测高频考点模拟试题含答案详解
- 2025北京昌平区统计局招聘经济运行监测工作专班助统员1人模拟试卷附答案详解(完整版)
- 2025儿童医院心理支持技能考核
- 2025湖北襄阳市神农架林区审计局招聘投资审计专业技术人员2名模拟试卷附答案详解(考试直接用)
- 中国高血压防治指南(2024年修订版)-ppt模板
- 江姐-绣红旗-红梅赞
- JTT 854-2013 公路桥梁球型支座规格系列
- 2024年高考数学一模试题分类汇编:立体几何(原卷版)
- 《名著阅读 艾青诗选》核心素养课件1(第1课时)
- 30道计量员岗位常见面试问题含HR问题考察点及参考回答
- 抖音短视频运营直播带货KPI绩效考核
- 《狗之歌》课件(湖北省县级优课)
- DB21-T 2951-2018秸秆热解制备生物炭技术规程
- 电磁阀试验操作规程
- 2024年日历工作日程计划表
评论
0/150
提交评论