高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法.doc_第1页
高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法.doc_第2页
高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法.doc_第3页
高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法.doc_第4页
高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3. 2立体几何中的向量方法教学目标:1. 掌握好向量的相关知识:概念、基本运算、建系方法、坐标求法(不定点的坐标)、平行与垂直、法向量求法2. 掌握向量作为工具解决立几问题的方法3. 向量解题后建议多思考传统的方法,不仅可以锻炼思维能力,还可以深刻认识空间几何的本质重点难点:向量作为工具解决立几问题的方法教学过程:相关知识与能力:一.空间距离的计算1. 空间两点间的距离:设A、B是空间两点,则A、B两点间的距离d=| abnABd2.两条异面直线间的距离:设a、b是两条异面直线,是a、b的公共法向量(即),点Aa,Bb则异面直线a、b间的距离 即方向上的射影长为异面直线a、b间的距离。3.点(或线)到平面的距离:PP0dO1)设P是平面内任一点,则PO到平面的距离 2)直线与平面(或平面与平面)的距离转化为点到平面的距离。二.空间角度的计算1. 两条异面直线所成的角:设l1与l2两条异面直线,l1 , l2,则l1与l2所成的角 =或= - (0)cos=或 cos= (0)2. 斜线P0P与平面所成的角3.二面角:设相交平面与的法向量分别为,则与所成的角的大小为 或 (如何确定?)典例分析: B CD A 例1.在棱长为1的正方体中,E、F分别是的中点,G在棱CD上,且,H为C1G的中点,应用空间向量方法求解下列问题。(1)求证:EFB1C;(2)求EF与C1G所成的角的余弦;(3)求FH的长。解:以D为坐标原点,建立如图所示的空间直角坐标系,则E(0,0,)F()C(0,1,0)B1(1,1,1)C1(0,1,1),G(0,0) 则即(2) 由(1)知故EF与所成角的余弦值为(3) H为C1G1的中点 H(0,),又F() 即例2.如图,在棱长为2的正方体中,E是DC的中点,取如图所示的空间直角坐标系。(1)写出A、B1、E、D1的坐标;(2)求AB1与D1E所成的角的余弦值。解:(1)A(2,2,0)B1(2,0,2),E(0,1,0),D1(0,2,2)(2) , 与所成的角的余弦值为例3.如图,在四棱锥中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F。(1)证明PA/平面EDB;(2)证明PB平面EFD;(3)求二面角CPBD的大小。解:如图所示建立空间直角坐标系,D为坐标原点,设DC=。(1)证明:连结AC,AC交BD于G,连结EG依题意得A(),P(0,0,a),E() 底面ABCD是正方形 G是此正方形的中心故点G的坐标为()且, ,这表明PA/EG,而平面EDB且PA平面EDB PA/平面EDB(2)证明:依题意得B(),又,故 PBDE,由已知EFPB,且,所以PB平面EFD(3)解:设点F的坐标为(),则 ,所以,二面角CPCD的大小为巩固练习:1、如图,已知矩形ABCD所在平面外一点P,PA平面ABCD,E、F分别是AB、PC的中点。(1)求证:EF/平面PAD;(2)求证:EFCD;(3)若,求EF与平面ABCD所成的角的大小。2、在正方体中,如图E、F分别是BB1,CD的中点,(1)求证:平面ADE;(2)作业布置:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC平面ABCD,且GC=2,求点B到平面EFG的距离。2、如图,在直四棱柱中,已知DC=DD1=2AD=2AB,ADDC,AB/DC。(1)设E是DC的中点,求证:D1E/平面A1BD;(2)求二面角的余弦值。教学反思:在立体几何的学习中,求各种“空间角”、和空间“距离”的难点在于作出相应的“角”及作出表示“距离”的线段,并给出相应的证明。引入向量的工具,避开了“作”、“证”这个难点,提供了解决求空间角、距离及证明“垂直”、“平行”的通法。进一步强化了“坐标法”、“数形结合”和“转化”等数学思想方法.3.2立体几何中的向量方法课前预习学案预习目标:1. 向量的相关知识:概念、基本运算、建系方法、坐标求法(不定点的坐标)、平行与垂直、法向量求法2. 向量作为工具解决立几问题的方法预习内容:一.空间距离的计算1. 空间两点间的距离:设A、B是空间两点,则A、B两点间的距离 abnABd2.两条异面直线间的距离:设a、b是两条异面直线,是a、b的公共法向量(即),点Aa,Bb则异面直线a、b间的距离 即方向上的射影长为异面直线a、b间的距离。3.点(或线)到平面的距离:PP0dO1)设P是平面内任一点,则PO到平面的距离2)直线与平面(或平面与平面)的距离转化为点到平面的距离。二.空间角度的计算1. 两条异面直线所成的角:设l1与l2两条异面直线,l1 , l2,则l1与l2所成的角 =或= - (0)cos=或 cos= (0)2. 斜线P0P与平面所成的角 B CD A 3.二面角:设相交平面与的法向量分别为,则与所成的角的大小为 或 (如何确定?)提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标:1掌握好向量的相关知识:概念、基本运算、建系方法、坐标求法(不定点的坐标)、平行与垂直、法向量求法1掌握向量作为工具解决立几问题的方法重点难点:向量作为工具解决立几问题的方法学习过程: 例1.在棱长为1的正方体中,E、F分别是的中点,G在棱CD上,且,H为C1G的中点,应用空间向量方法求解下列问题。(1)求证:EFB1C;(2)求EF与C1G所成的角的余弦;(3)求FH的长。例2.如图,在棱长为2的正方体中,E是DC的中点,取如图所示的空间直角坐标系。(1)写出A、B1、E、D1的坐标;(2)求AB1与D1E所成的角的余弦值。例3.如图,在四棱锥中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F。(1)证明PA/平面EDB;(2)证明PB平面EFD;(3)求二面角CPBD的大小。当堂检测:1、如图,已知矩形ABCD所在平面外一点P,PA平面ABCD,E、F分别是AB、PC的中点。(1)求证:EF/平面PAD;(2)求证:EFCD;(3)若,求EF与平面ABCD所成的角的大小。2、在正方体中,如图E、F分别是BB1,CD的中点,(1)求证:平面ADE;(2)课后练习与提高1、如图,已知正方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论