全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Hadoop编程入门Hadoop 是Google MapReduce的一个Java 实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同java程序员可以不考虑内存泄露一样, MapReduce的 run-time系统会解决输入数据的分布细节,跨越机器集群的程序执行调度,处理机器的失效,并且管理机器之间的通讯请求。这样的模式允许程序员可以不 需要有什么并发处理或者分布式系统的经验,就可以处理超大的分布式系统得资源。一、概论作为Hadoop程序员,他要做的事情就是:定义Mapper,处理输入的Key-Value对,输出中间结果。定义Reducer,可选,对中间结果进行规约,输出最终结果。定义InputFormat 和OutputFormat, 可选,InputFormat将 每行输入文件的内容转换为Java类供Mapper函数使用,不定义时默认为String。定义main函数,在里面定义一个Job并运行它。 然后的事情就交给系统了。基本概念:Hadoop的HDFS实现了google的GFS文件系统,NameNode作 为文件系统的负责调度运行在master,DataNode运 行在每个机器上。同时Hadoop实现了Google的MapReduce,JobTracker作 为MapReduce的 总调度运行在master,TaskTracker则 运行在每个机器上执行Task。main()函数,创建JobConf, 定义Mapper,Reducer,Input/OutputFormat 和输入输出文件目录,最后把Job提交給JobTracker, 等待Job结束。JobTracker, 创建一个InputFormat的 实例,调用它的getSplits()方法,把输入目录的文件拆分成FileSplist作 为Mapper task 的输入,生成Mapper task加入Queue。 TaskTracker 向 JobTracker索 求下一个Map/Reduce。Mapper Task先从InputFormat创 建RecordReader, 循环读入FileSplits的 内容生成Key与Value,传给Mapper函数,处理完后中间结果写成SequenceFile. Reducer Task 从运行Mapper的TaskTracker的 Jetty上使用http协议获取所需的中间内容(33%),Sort/Merge后(66%),执行Reducer函数,最后按照 OutputFormat写 入结果目录。TaskTracker 每10秒向JobTracker报 告一次运行情况,每完成一个Task10秒后,就会向JobTracker索 求下一个Task。Nutch项目的全部数据处理都构建在Hadoop之上,详见Scalable Computing with Hadoop。二、程序员编写的代码我们做一个简单的分布式的Grep,简单对输入文件进行逐行的正则匹配,如果符合就将该行打印到输出文件。因为是简单的全部输出,所以我 们只要写Mapper函数,不用写Reducer函数,也不用定义Input/Output Format。package demo.hadoop public class HadoopGrep public static class RegMapper extends MapReduceBase implements Mapper private Pattern pattern;public void configure(JobConf job) pattern = Ppile(job.get( mapred.mapper.regex );public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter)throws IOException String text = (Text) value).toString(); Matcher matcher = pattern.matcher(text);if (matcher.find() output.collect(key, value);private HadoopGrep () / singletonpublic static void main(String args) throws Exception JobConf grepJob = new JobConf(HadoopGrep. class );grepJob.setJobName( grep-search );grepJob.set( mapred.mapper.regex , args 2 );grepJob.setInputPath( new Path(args 0 );grepJob.setOutputPath( new Path(args 1 );grepJob.setMapperClass(RegMapper. class );grepJob.setReducerClass(IdentityReducer. class );JobClient.runJob(grepJob);RegMapper 类 的configure()函数接受由main函数传入的查找字符串,map() 函数进行正则匹配,key是行数,value是文件行的内容,符合的文件行放入中间结果。 main()函数定义由命令行参数传入的输入输出目录和匹配字符串,Mapper函数为RegMapper类,Reduce 函数是什么都不做,直接把中间结果输出到最终结果的的IdentityReducer类, 运行Job。整个代码非常简单,丝毫没有分布式编程的任何细节。三. 运行Hadoop程序Hadoop这方面的文档写得不全面,综合参考GettingStartedWithHadoop与Nutch Hadoop Tutorial 两篇后,再碰了很多钉子才终于完整的跑起来了,记录如下:3.1 local运行模式完全不进行任何分布式计算,不动用任何namenode,datanode的做法,适合 一开始做调试代码。 解压hadoop,其中conf目录是配置目 录,hadoop的配置文件在hadoop-default.xml,如果要修改配置,不是直接修改该文件,而是修改hadoop-site.xml,将 该属性在hadoop-site.xml里重新赋值。 hadoop- default.xml的默认配置已经是local运行,不用任何修改,配置目录里唯一必须修改的是hadoop-env.sh 里JAVA_HOME的位置。将编译好的HadoopGrep与RegMapper.class 放入hadoop/build/classes/demo/hadoop/目录 找一个比较大的log文件放入一个目录,然后运行hadoop / bin / hadoop demo.hadoop.HadoopGrep log文件所在目录任意的输出目录grep的字符串查看输出目录的结果,查看hadoop/logs/里的运行日志。 在重新运行前,先删掉输出目录。3.2 单机集群运行模式现在来搞一下只有单机的集群.假设以完成3.1中的设置,本机名为 hadoopserver1.修改hadoop-site.xml ,加入如下内容: hadoopserver:9000 mapred.job.tracker hadoopserver:9001 dfs.replication 1从此就将运行从local文件系统转向了hadoop的hdfs系 统,mapreduce的jobtracker也从local的进程内操作变成了分布式的任务系统,9000,9001两个端口号是随便选择的两个空余端 口号。另外,如果你的/tmp目录不够大,可能还要修改hadoop.tmp.dir属性。2. 增加ssh不输入密码即可登陆。因为Hadoop需要不用输入密码的ssh来进行调度,在不su的状态下,在自己的 home目录运行ssh-keygen -t rsa ,然后一路回车生成密钥,再进入.ssh目录,cp id_rsa.pub authorized_keys 详细可以man 一下ssh, 此时执行ssh hadoopserver,不需要输入任何密码就能进入了。3.格式化namenode,执行 bin/hadoop namenode -format4.启动Hadoop,执行hadoop/bin /start-all.sh, 在本机启动namenode,datanode,jobtracker,tasktracker5. 现在将待查找的log文件放入hdfs,执行hadoop/bin/hadoop dfs 可以看到它所支持的文件操作指令。 执行hadoop/bin/hadoop dfs put log文件所在目录 in ,则log文件目录已放入hdfs的/user/user-name/in 目录中6. 现在来执行Grep操作,hadoop/bin/hadoop demo.hadoop.HadoopGrep in out 查看hadoop/logs/里的运行日志,重新执行前。运行hadoop/bin/hadoop dfs rmr out 删除out目录。7.运行hadoop/bin/stop-all.sh 结束3.3 集群运行模式假设已执行完3.2的配置,假设第2台机器名是hadoopserver2创建与hadoopserver同样的执行用户,将hadoop解压到相同的目 录。同样的修改haoop-env.sh中的 JAVA_HOME 及修改与3.2同样的hadoop-site.xml将 hadoopserver中的/home/username/.ssh/authorized_keys 复制到hadoopserver2,保证hadoopserver可以无需密码登陆hadoopserver2修改hadoop-server的hadoop/conf/slaves文件, 增加集群的节点,将localhost改为hadoop-server hadoop-server2在 hadoop-server执行 hadoop/bin/start-all.sh,将会在hadoop-server启动 namenode,datanode,jobtracker,tasktracker;在hadoop-server2启动datanode 和tasktracker现在来执行Grep操作:hadoop/bin/hadoop demo.hadoop.HadoopGrep in out重新执行前,运行hadoop/bin/hadoop dfs rmr out 删除out目录运行 hadoop/bin/stop-all.sh 结束。scp /home/username/.ssh/authorized_keys usernamehad
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮小吃合伙合同范本
- 餐饮店人员合同协议书
- 饭店外包加盟合同范本
- 饭店粮油采购合同范本
- 饭店蛋糕采购合同范本
- 饭店预定酒席合同范本
- 鱼类分割售卖合同范本
- 风力发电场景优化作业指导书
- 签订聘任协议业绩合同
- 管材采购经销合同范本
- 2025年军队文职人员招聘考试题库附答案(满分必刷)
- 办公室文秘工作流程优化策略
- 2025高中政治主观题答题模板
- 3.1生活中的立体图形(教学设计)- 华东师大版(2024)七上
- 2025贵州天健福康医养供应链有限责任公司招聘劳动合同制人员18人实施考试参考试题及答案解析
- 2025下半年厦门市总工会招聘工会专干和集体协商指导员50人考试参考题库及答案解析
- 【新教材】2025-2026学年人教版(2024)信息科技六年级全一册教案(教学设计)
- 档案数字化项目实施监督方案
- 2025年节能减排在铁路运输业中的实施策略可行性研究报告
- 液压设备安全培训课程课件
- 国开2025年《行政领导学》形考作业1-4答案
评论
0/150
提交评论