




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节 一 第一型曲面积分的概念与性质 二 第一型曲面积分的计算法 第一型曲面积分 第九章 一 对面积的曲面积分的概念与性质 引例 设曲面形构件具有连续面密度 类似求平面薄板质量的思想 采用 可得 求质 大化小 常代变 近似和 求极限 的方法 量M 其中 表示n小块曲面的直径的 曲面的直径为其上任意两点间距离的最大者 最大值 定义 设 为光滑曲面 乘积和式极限 都存在 的曲面积分 其中f x y z 叫做被积 据此定义 曲面形构件的质量为 曲面面积为 f x y z 是定义在 上的一 个有界函数 或第一类曲面积分 若对 做任意分割和局部区域任意取点 则称此极限为函数f x y z 在曲面 上对面积 函数 叫做积分曲面 则对面积的曲面积分存在 对积分域的可加性 则有 线性性质 在光滑曲面 上连续 对面积的曲面积分与对弧长的曲线积分性质类似 积分的存在性 若 是分片光滑的 例如分成两 片光滑曲面 定理 设有光滑曲面 f x y z 在 上连续 存在 且有 二 对面积的曲面积分的计算法 则曲面积分 证明 由定义知 而 光滑 说明 可有类似的公式 1 如果曲面方程为 2 若曲面为参数方程 只要求出在参数意义下dS 的表达式 也可将对面积的曲面积分转化为对参数的 二重积分 见本节后面的例4 例5 例1 计算曲面积分 其中 是球面 被平面 截出的顶部 解 思考 若 是球面 被平行平面z h截 出的上下两部分 则 例2 计算 其中 是由平面 坐标面所围成的四面体的表面 解 设 上的部分 则 与 原式 分别表示 在平面 例3 设 计算 解 锥面 与上半球面 交线为 为上半球面夹于锥面间的部分 它在xOy面上的 投影域为 则 思考 若例3中被积函数改为 计算结果如何 例4 求半径为R的均匀半球壳 的重心 解 设 的方程为 利用对称性可知重心的坐标 而 用球面坐标 思考题 例3是否可用球面坐标计算 解释什么是球面坐标变换 例5 计算 解 取球面坐标系 则 解释什么是球面坐标变换 例6 计算 其中 是球面 利用对称性可知 解 显然球心为 半径为 利用重心公式 例7 计算 其中 是介于平面 之间的圆柱面 分析 若将曲面分为前后 或左右 则 解 取曲面面积元素 两片 则计算较繁 方法很特殊 强记 例8 求椭圆柱面 位于xOy面上方及平面 z y下方那部分柱面 的侧面积S 解 取 微元法 内容小结 1 定义 2 计算 设 则 曲面的其他两种情况类似 注意利用球面坐标 柱面坐标 对称性 质心公式 简化计算的技巧 基础训练题 1 设 在xOy面上的投影域为 这是 的面积 2 如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年生态循环农业技术创新模式与农业保险产品开发研究报告
- 两亲性复合蛋白对三种酶的修饰作用及机制探究
- 世界自然遗产地旅游景观健康评价与调控研究-以湖南崀山为例
- 不同年龄段抑郁症病例的特征、成因与治疗路径剖析
- 下位视角下延吉市中小学教师培训激励政策:现状问题与优化路径
- FDD多用户大规模MIMO系统中信道状态信息获取与反馈技术的深度剖析与创新研究
- 中国愈裂贴膏行业市场前景预测及投资价值评估分析报告
- 食品行业2025年质量安全追溯体系在食品安全事故应急处理中的应用报告
- 中南国际农产品物流园项目可行性研究报告
- 2025年锑市场现状调研及前景趋势预测报告
- 肿瘤科新护士入科培训和护理常规
- 第4章 颌位(双语)
- 课程综述(数电)
- 塔吊负荷试验方案
- 购买社区基本公共养老、青少年活动服务实施方案
- 伤口和伤口敷料基础知识.ppt
- 安徽省中等职业学校学历证明书办理申请表
- 《慢性肾脏病》PPT课件.ppt
- 例析物理竞赛中纯电阻电路的简化和等效变换
- 六年级下册美术课件第13课《祖国美景知多少》浙美版
- 智能照明系统的外文文献原稿和译文.doc
评论
0/150
提交评论